
VOXEL OCTREE INTERSECTION BASED 3D SCANNING

JOEL BENNETT
Bachelor of Science, University of Lethbridge, 2008

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Joel Bennett, 2014

VOXEL OCTREE INTERSECTION BASED 3D SCANNING

JOEL BENNETT

Approved:

Signature Date

Co-Supervisor: Dr. Stephen Wismath

Co-Supervisor: Dr. Kevin Grant

Committee Member: Denton Fredrickson

Committee Member: Dr. David Kaminski

Chair, Thesis Examination Committee: Dr. Howard Cheng

Dedication

To those who keep trying. Don’t ever give up.

iii

Abstract

Recent developments in the field of three dimensional (3D) printing have resulted in widely

available low-cost 3D printers. These printers require 3D models, which are traditionally

created in 3D modeling software or are created from 3D scans of existing objects. To

be printable, these models must exhibit the property of being watertight. In this thesis, a

technique is developed which, in combination with a custom built low-cost 3D scanner,

produces watertight 3D models. Models produced by this technique – the voxel octree in-

tersection technique – do not require any additional processing prior to 3D printing. Results

from using this technique with the custom built scanner are examined, along with the effects

of changing various parameters to the technique.

iv

Acknowledgments

First, I’d like to thank my immediate family – both my wife and my parents in supporting

me along the way. To my dad, thank you for exposing me to all sorts of interesting science

videos when I was young, and for having a computer in the home. Who would have thought

that you would end up having a child who would be a computer programmer?

Next, I’d like to thank my co-supervisors – Stephen Wismath and Kevin Grant. You’ve

been crazy enough to take me on as a graduate student, and giving me the freedom to pursue

some pretty wild ideas. This thesis is the tip of an iceberg of awesomeness that was birthed

in the HCI lab.

To my former lab-mate Chris Sanden, thank you for the interesting conversations and

showing me that success in both academia and the private sector is possible. Bouncing

ideas off each other in the lab was an absolute blast, and a time I’ll never forget. David Fox

– thank you for helping me with the stepper motor wiring. To Kevin and Catherine in the

Arts department – thank you for letting me use your equipment and your time.

I’d also like to offer a special thank you to the Government of Alberta and federal

government of Canada for their respective funding. Thank you for remembering that the

future starts now, and thank you for being willing to invest in it.

To Stanford University – thank you for the bunny and dragon models. There’s some-

thing ironic about a rabbit that has been scanned, printed, then re-scanned and re-printed.

I am sure that there are so very many others that I could thank. All of you, in your own

individual way, have had an effect on me. Here’s to hoping that I’ll be able to make my

own ‘dent’ in the universe, and have a positive effect on others along the way...

v

Contents

Approval/Signature Page ii

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 3D Printing . 2

1.1.1 Uses of 3D Printing . 3
1.2 Watertight Geometry . 4
1.3 3D Scanning . 5

1.3.1 Contact-Based Scanning . 5
1.3.2 Contactless Scanning . 5
1.3.3 Uses of 3D Scanning . 8

1.4 Objectives . 8
1.5 Structure of this Document . 9

2 Related Work and the Microsoft Kinect 10
2.1 Related Work . 10

2.1.1 Ball-Pivot Algorithm . 10
2.1.2 Surface Nets . 11
2.1.3 Power Crust . 12
2.1.4 Poisson . 13
2.1.5 Marching Cubes and Marching Tetrahedrons 13
2.1.6 KinectFusion . 15

2.2 Microsoft Kinect . 16

3 The Voxel Octree Intersection Technique 18
3.1 Object Placement and Data Filtering . 21
3.2 Clipping and Storing Captured Data . 24
3.3 Triangulation and Thresholding . 25
3.4 Octree Intersections . 27
3.5 Isosurface Generation . 33

vi

CONTENTS

4 Implementation and Results 36
4.1 Implementation . 36

4.1.1 Configuring the Scanner and Performing a Scan 37
4.2 Analysis of Introduced Error . 38

4.2.1 Aliasing . 42
4.2.2 Worst Case and Minimum Thickness 44

4.3 Comparison of Data Filters . 45
4.4 Comparison of Resolutions . 47
4.5 Analysis of Space and Time Efficiency . 49
4.6 Final Print Comparison . 50
4.7 Comparison to a Commercially Available Scanner 52

5 Conclusion and Future Work 53
5.1 Conclusion . 53
5.2 Future Work . 54

5.2.1 Improved Data Filters . 54
5.2.2 Alternate Scanning Hardware and Cloud Based Processing 54
5.2.3 Parallelized Implementation . 56
5.2.4 Caching Systems . 56
5.2.5 Virtualized Scanning for Large Areas 57

Bibliography 59

A Scanner Design 63
A.1 Scanner Hardware Design . 63
A.2 Electronics . 65

B Cost Breakdown 67

vii

List of Tables

3.1 Relationship between tree height and node size for a 1.0 m root node. . . . 32

4.1 Processing times, memory consumption and polygon count with increasing
leaf size. 48

B.1 Approximate cost of scanning hardware. 67

viii

List of Figures

1.1 An example of an open and closed shape. 4

2.1 Ball Pivot algorithm initial state. 11
2.2 Ball pivot algorithm after first step. 11
2.3 Ball pivot algorithm and an acute surface. 11
2.4 An example of applying the Marching Squares algorithm. 14
2.5 Infrared depth image taken from a Microsoft Kinect. 16

3.1 Greyscale depth values from the Kinect sensor. 22
3.2 Invalid depth values over a ten frame average. 22
3.3 Two dimensional array of points used to create a series of triangles. 25
3.4 Consecutive depth points accidentally linking separate surfaces. 26
3.5 Similar scans with different threshold values applied. 27
3.6 A quadtree being intersected by a line. 29
3.7 Gathering values for isosurface generation from neighboring nodes. 34

4.1 The main scanner application and data viewing application. 37
4.2 A poorly calibrated and a well calibrated scan. 38
4.3 Introduced error in two dimensions. 40
4.4 A portion of a scan showing aliasing. 42
4.5 Marching squares without and with interpolation. 44
4.6 A 2D mesh of minimum thickness created by Marching Tetrahedrons. . . . 45
4.7 Data from the Basic data filter converted to a grayscale image. 46
4.8 Differences between the Basic and Average data filters over ten frames. . . 47
4.9 Differences between the Average and Average-Discard data filters over ten

frames. 47
4.10 Differences between the Average and Average-Discard data filters over 250

frames. 47
4.11 Scans completed using various leaf node sizes. 47
4.12 Original models and their scanned equivalents. 51
4.13 A protrusion on a scanned model. 52
4.14 A partial scan of the Stanford Bunny. 52

A.1 An overview of the scanning hardware setup. 64
A.2 Expanded details of the scanner base, in exploded view. 64
A.3 A scan showing non-planar platforms. 65

ix

Chapter 1

Introduction

Recent developments in the field of three dimensional (3D) printing have lowered the cost

of commercially available 3D printers. For example, a low-cost 3D printer can be purchased

for less than $600 [12], while only three decades ago the cost of a similarly capable printer

could easily have been ten times that amount [11]. As a result of these recent developments,

3D printers and 3D printing services are now reaching a larger audience than ever before.

The dropping costs and commercial availability of 3D printers and 3D printing services

have led to a revolution in personal manufacturing. A single individual with a low-cost 3D

printer can now prototype complex objects with minimal cost in minimal time. Not only

can an individual quickly revise a design, but the prerequisites for manufacturing have also

been lowered. Instead of needing complex and expensive machinery, all that is need to

produce an item is a computer, a 3D printer, raw printing materials, and a design. When

working with 3D printing and computer numerical control (CNC) machining, these designs

come in the form of a 3D model.

In order to create a 3D print or CNC machined object, a 3D model of the object is a re-

quirement. These models are traditionally constructed using computer aided design (CAD)

software, or may be created from a 3D scan of an existing object. Both approaches have

advantages and disadvantages. Regardless of how these 3D models are constructed, they

must exhibit the property of being watertight. This means that there cannot be any holes,

gaps, or open seams along the surface of the object. If an object were filled with water, it

should not leak. Objects which are 3D printed or CNC machined must be watertight [7].

1

1.1. 3D PRINTING

The process of 3D printing or CNC machining must be able to determine which regions

of an object represent the inside, outside, and surface of the object being created. If it is

impossible to make this distinction, it becomes impossible to create an accurate re-creation

of the object in question.

In this thesis, a technique is developed that uses a custom built, low-cost 3D scanner and

simple scanning technique to create watertight 3D scans. By using commercially available,

off-the-shelf components in a unique hardware arrangement, we are able to construct a

simple low-cost 3D scanner. By processing data from this scanner in a series of specific

steps, we are able to generate a watertight 3D model which does not require any additional

processing prior to 3D printing. This particular technique for generating a watertight 3D

model is known as the voxel octree intersection technique.

1.1 3D Printing

3D printing is the process of creating a three dimensional physical model from a digital

source. Similar to how a traditional inkjet or laser printer creates a two dimensional image

on a piece of paper, a 3D printer creates a three dimensional object. Commercially available

3D printers generally use one of the following methods to create a solid print:

Fused deposition modeling With fused deposition modeling, a printer melts and ejects a

continuous strand of filament. A computer guided nozzle moves around the printing

area, ejecting the melted filament. This molten filament hardens, and forms a single

layer of the object. When a layer is complete, distance between the completed layer

and the printing head is increased, and the next layer is deposited on top of the pre-

viously printed layer. This process is continued until the entire object has been con-

structed, layer by layer. Common filament materials include PLA (polylactic acid)

and ABS (acrylonitrile butadiene styrene) plastic.

Stereolithography Stereolithography relies on curing a photosensitive liquid using a beam

of light. A computer guides the light onto areas where solid material is desired. When

2

1.2. WATERTIGHT GEOMETRY

all desired areas of a single layer have been exposed to the light, the current layer is

submerged in the photosensitive liquid, covering the recently exposed layer in more

liquid. This layer of fresh liquid is then cured in the same way as the previous layer.

The process is repeated until all layers of the object have been cured.

Sintering With sintering, a heat source such as a heat gun or laser is used to melt the shape

of the desired object into a layer of powered substrate. When the desired shape is

melted, more substrate is added on top, covering the previously created shape. The

next shape is melted into this new layer of substrate, fusing it to the material of

the previous layer. This process is repeated until all layers of the object have been

created, after which the remaining unfused substrate is then removed leaving only

the desired object. The advantage of this technique over fused deposition modeling

and stereolithography is that the substrate acts as a support while the object is being

printed. This makes it possible to print complex objects without the need for adding

additional supports to the object during the printing process. A modified version of

this technique may apply a binding agent rather than a heat source to bind together

particles of the substrate.

1.1.1 Uses of 3D Printing

Although 3D printing has been around for several decades [30], recent developments in

low-cost 3D printing have sparked a renewed interest in 3D printing technologies. Recent

uses for 3D printing have included printing personal firearms [49], bone scaffolding [15],

oral surgery implants [14], replacement car parts [33] and aerospace components [38]. Be-

cause of its ability to create complex components, 3D printing is quickly becoming a choice

manufacturing technology for prototyping objects when compared to traditional manufac-

turing technologies.

3

1.3. 3D SCANNING

Figure 1.1: An example of an open and closed shape.

1.2 Watertight Geometry

All of the previously mentioned 3D printing methods create the final printed object layer

by layer. To do this, the printer must have a set of instructions on how to construct each

layer. This is done by using computer software to slice the original 3D model, creating

a series of cross-sections along the height of the object. The software then instructs the

printer on how to move the print head to re-create each of these slices. In each of these

slices, areas are marked as being either inside, outside, or along the contour of the surface

of the object being printed. Because the 3D printing process requires knowing these distinct

areas, printing problems can arise if a model is not watertight.

Figure 1.1 shows an example of the cross-section of two shapes. Thick lines denote the

surface of the object and thin lines indicate the direction of surface normals. If a simple

flood-fill algorithm was used to color the interior of shape A, only the interior of shape A

would be filled with color. If the same flood-fill algorithm was used to color the interior

of shape B, nearly the entire image would be filled with color with the exception of the

interior of shape A. When 3D printing, in order to distinguish which areas need to be

printed, there must be no ambiguity as to whether or not a particular region belongs to the

interior, exterior, or contour of an object. Such ambiguity may result in regions being filled

by the 3D printer which should not otherwise be printed. For example, in Figure 1.1, if

objects A and B were printed, the entire layer would be marked as being either the contour

or the interior of an object, and would be printed as such, resulting in an undesirable print.

4

1.3. 3D SCANNING

1.3 3D Scanning

Three dimensional scanning is the process of collecting information from a scene or

object, and using that information to digitally reconstruct the scene or object being scanned.

Information collected may include 3D positions, surface normals, and color information

about specific points in 3D space. Current 3D scanning methods can be placed into one of

two categories: those that require physical contact between the scanning device and object

being scanned, and those that do not.

1.3.1 Contact-Based Scanning

Contact-based scanning systems use a physical probe that contacts the surface of the ob-

ject being scanned. For example, a high-end Computer Numerical Control (CNC) machine

may use a Coordinate Measuring Machine (CMM) attachment to determine the dimensions

of a workpiece prior to machining. Other physical contact 3D scanners use a series of link-

ages and joints. The orientations of the joints are tracked, and are used to located the probe

end of the device in three dimensions. Destructive scanning methods are also included in

this category, as they require the object being scanned to be cut or abraded into a series of

slices. Measurements are taken at each slice, and are used to re-create the object.

Although highly accurate [46], able to scan reflective surfaces, and often used in the

machining industry, these types of scanners do have some drawbacks. The speed at which

they can operate are physically limited, as they are often only able to measure a single

point at a time. They also require physical contact between the scanner and object at each

scanned point, which may be seen as a drawback when attempting to scan objects that are

of a fragile or biological nature.

1.3.2 Contactless Scanning

Most contactless scanning methods work by emitting a beam or pattern of light which is

bounced off the surface of the object being scanned. One or more properties of the reflected

light are analyzed and used to calculate the distance between the emitter and returned beam.

5

1.3. 3D SCANNING

These measurements are then used to reconstruct the object being scanned.

Triangulation

With triangulation based scanning, a laser point or line is projected into the scene. The

laser light bounces off the object being scanned, and is picked up by an optical sensor, such

as a CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor)

sensor. The laser emitter and sensor are held a fixed distance from each other, with the laser

light being emitted at a known angle. Based on data coming from the optical sensor, it is

possible to create a triangle using the position of the optical sensor, laser, and sensed laser

dot or line. Because the distance between the laser emitter and optical sensor are known,

and the angle of the emitted laser light is also known, this can be used to triangulate the

position of the reflected laser light. An example of a commercial product that uses this

method is the Makerbot Digitizer [23].

Structured Light

Structured light scanners rely on a similar principle to triangulation based scanners, but

rather than emitting a single point or beam of light, they use emitters that project a set pat-

tern of light. Discrepencies are noted between the projected pattern and the pattern that

is detected with the optical sensor. The distortion in the projected pattern is then used to

calculate depth values, which are used to generate a model of the object being scanned [42].

In order to obtain quantifiable depth measurements, structured light scanners must be cali-

brated prior to use.

Confocal Laser Scanning Microscopy

With confocal laser scanning microscopy, a laser light is passed through a series of

narrow apertures and lenses, and is captured on an optical sensor. The amount of diffrac-

tion in the received light is measured, and is used to determine the distance to the object

which reflected it. Each measurement retrieves a single 3D point. This method is capable

6

1.3. 3D SCANNING

of capturing incredibly small objects, such as individual cells or integrated circuit compo-

nents [44]. Because confocal laser scanning microscopy captures only one point at a time,

it is limited in scanning speed.

Photogrammetry

Unlike previously mentioned methods, photogrammetry does not require projecting a

light into the scene being scanned. With photogrammetry, two or more 2D images are taken

of an object from different positions. Unique features of the object being photographed

are identified, and the relationships between these features are used to reconstruct a three

dimensional model of the object in question [45]. A recently released software package

called 123D Catch by Autodesk© uses this technique to generate 3D models based on a

series of 2D images. Although this method does potentially allow reflective objects to

be scanned, there is some doubt as to whether it produces better results than laser based

triangulation methods [6].

Volumetric

As with photogrammetry, volumetric scanning methods do not rely on projected light.

These scanning methods include Computer Tomography (CT) and Magnetic Resonance

Imaging (MRI) scans. These methods rely on capturing a series of two dimensional images

along a specified axis. These 2D images are then compiled into a volumetric model of

the object. The volumetric models produced by these methods are often rendered using

ray-tracing [18], or are converted to polygonal models [31] and rendered in a traditional

manner.

Time-of-Flight

Time-of-flight based scanners emit measured pulses of light. These pulses of light re-

flect off the surface being scanned, and bounce back toward a high-speed sensor. The sensor

is able to measure the delay between when the light was emitted and when it was sensed.

7

1.4. OBJECTIVES

This, combined with the speed of light, is used to calculate the distance to the object which

reflected the light. Time-of-flight sensors include most LIDAR systems, as well as the Mi-

crosoft Kinect 2.0. Although these types of sensors are capable of many measurements per

second, they may suffer from considerable noise [16]. Like other contactless based scan-

ning methods which rely on projected light, they are also unable to scan surfaces which are

highly reflective, refractive, or which absorb the particular wavelength of emitted light.

1.3.3 Uses of 3D Scanning

Some of the many uses of 3D scanning include digitally re-creating race tracks for

video games [21], preserving sculptures and museum exhibits of historical importance [29],

replicating movie sets for use with visual effects [1], reverse engineering, prosthetics fitting,

and medical diagnostics.

1.4 Objectives

This thesis describes a technique for taking data captured from a Microsoft Kinect depth

sensor and converting that data into a 3D watertight mesh. Because the end result is water-

tight, the mesh is immediately suitable for 3D printing or CNC machining without the need

for any additional processing. This technique was developed with the following restrictions

in mind:

• To be able to generate a watertight 3D model without the need for any post-processing.

• To be capable of scaling detail, as needed.

• To not require video memory or additional GPU (Graphics Processing Unit) hardware

during processing.

• To utilize only off-the-shelf, widely available, low-cost hardware components.

8

1.5. STRUCTURE OF THIS DOCUMENT

With these particular restrictions in place, it was necessary to develop a new technique

for handling this specific situation. This technique takes a voxel-based approach, and uses

an underlying tree data structure to accomplish these goals.

1.5 Structure of this Document

Chapter 2 looks at related work and describes in detail the workings of the Microsoft

Kinect sensor. Chapter 3 provides a detailed description of the voxel octree intersection

technique. Chapter 4 shows the results of using this technique, including the effects of

altering various parameters to the technique. Chapter 5 discusses areas of potential future

work which may be used to increase the efficiency and effectiveness of the voxel octree

intersection technique. The appendices include the hardware design of the 3D scanning

rig used to obtain the results, and show an approximate cost breakdown of the equipment

used.

9

Chapter 2

Related Work and the Microsoft Kinect

2.1 Related Work

The field of surface reconstruction from point data is not a new problem, nor is it a

simple problem [26]. Various algorithms have been developed that convert point cloud data

into polygonal models [34]. Depending on the nature of the data being used, a particular

algorithm may make use of structured or unstructured data, and create a polygonal mesh,

spline-based surface, or volumetric model. Some methods take into account local or global

fitting, including fitting points against known shapes [8]. Additionally, some methods pro-

duce watertight meshes while others do not. A sampling of these methods, including those

that relate more closely to the voxel octree intersection technique are described in detail as

follows.

2.1.1 Ball-Pivot Algorithm

The ball-pivot algorithm reconstructs a polygonal mesh based on a dense set of unor-

ganized point data [9]. The algorithm does so by starting with a single seed triangle and

a ball (sphere). The ball is placed on the edge of the seed triangle, and is rotated on the

edge until it contacts another point in the point cloud. When contact is made, the edge upon

which the ball has been rotating and the contacted point are used to form a triangle. This

triangle is added to the output mesh, and the process is repeated along the edges belonging

to the perimeter of the mesh. When no more contacts are encountered, a new seed triangle

is selected, and the process is repeated. When the process yields no more contacts between

10

2.1. RELATED WORK

any seed triangles or perimeter edges, the process is complete.

Figure 2.1: (a) Figure 2.2: (b) Figure 2.3: (c)

A two-dimensional representation of this process is shown in Figure 2.1. In the 2D

case, the process begins by creating a seed edge between two points. A ball is created, and

rotated around a single point. When the rotated ball contacts a point, an edge is created

between the point of rotation and the contacted point.

The Ball-Pivot algorithm produces a polygonal mesh which is not guaranteed to be

watertight. Although the algorithm is capable of generating a mesh from an unorganized

point cloud, points must be regularly spaced in order to give ideal results. If too small of

a ball is chosen or if points are irregularily spaced, the resulting mesh will contain holes.

Similar issues happen when attempting to re-create acute surface features. When rotating

the ball around an edge, the ball may contact the opposing side of an acute feature prior

to contacting the inner portion of the feature. If this occurs, the resulting surface spans the

gap between opposing sides of the feature, rather than creating an acute feature, as shown

by example in Figure 2.3. In this example, the rotated ball failed to contact the lower point

prior to contacting the rightmost point, resulting in a loss of detail of the final surface.

2.1.2 Surface Nets

The Surface Nets algorithm is designed to provide a smooth three dimensional model

from data obtained through medical scanning procedures such as MRI or CT scans [20].

Volumetric data coming from medical scanners often comes in the form of a series of 2D

slices. The resolution of this data may vary in different dimensions. For example, the

11

2.1. RELATED WORK

distance between adjacent pixels in a single image may be considerably smaller than the

distance between the same pixel between two adjacent slices. The Surface Nets algorithm

is able to recreate a smoothed polygonal model of the surface that does not suffer from

aliasing that other methods produce when dealing with such data [17].

The Surface Nets algorithm works by defining a set of cubes that have at least one

corner belonging to the surface of the object being re-created. In each of these cubes, a

node is placed in the center of the cube and adjacent nodes are connected with an edge. A

function is then applied which relaxes the position of the node within the cube, with the

restriction that the node must be kept inside the bounds of the cube. This same function

attempts to minimize the distance between all edges in the connected net. Once the net

has been relaxed, and the distances between the connected nodes have been minimized, a

3D polygonal surface is constructed by linking neighboring nodes with a set of polygons.

Although the resulting mesh may be free from aliasing and topologically smooth when

compared to other methods [28], there is no guarantee that the resulting mesh is watertight.

2.1.3 Power Crust

Unlike the previously mentioned algorithms, the Power Crust algorithm generates a wa-

tertight mesh [4]. It does this by calculating an approximate medial axis transform (MAT) of

a set of points. The MAT can be thought of as the union of an infinite number of maximum-

sized balls that are contained in a given shape. To calculate the MAT, the input points are

first used to create a special weighted Voronoi diagram called the power diagram. A series

of balls are created and applied to the power diagram. Each ball is expanded to its max-

imal size. Those balls which are able to expand indefinitely are considered to be outside

the shape while those that are unable to expand make up the interior of the shape. The

border between these two types of balls is used to establish the contour of the object being

re-created.

By adjusting the radius of the interior balls, a thin crust of the object can be created.

12

2.1. RELATED WORK

This crust is then converted into two sets of triangular faces – those that border the inside

of the object and those that border the outside of the object. The end result is a watertight

set of geometry that forms a thin crust along the surface of the object. The accuracy of the

re-created object depends heavily on the density of the original set of points. Although the

algorithm is able to re-create a polygonal mesh from a set of unorganized point data, it relies

on calculating the Delaunay triangulation of the set of points. The Delaunay triangulation

has a worst case complexity of O(n2), although average cases are closer to being linear in

time [4].

2.1.4 Poisson

Poisson surface reconstruction algorithms require point cloud data where each point in

the point cloud has an associated normal [24]. The normal is used to calculate a gradient

field, which is then used to solve a Poisson equation. To generate a polygonal mesh, the

original surface points and results from the Poisson equation are considered. A modified

version of the Marching Cubes algorithm is used to generate the resulting polygonal mesh.

The particular Poisson based approach presented by [24] is resistant to noise, handles ar-

eas of both high and low detail, and produces a watertight mesh. A parallelized Poisson

surface reconstruction algorithm has also been developed to work with particularly large

datasets [10].

Although Poisson based reconstruction methods may produce watertight meshes with

high detail, they may introduce some error into the generated mesh. If two groups of depth

readings are separated by an empty region where no depth readings are available, the algo-

rithm may fill the gap between these two regions, resulting in an incorrect topology.

2.1.5 Marching Cubes and Marching Tetrahedrons

One of the most common isosurface extraction algorithms is that of Marching Cubes.

Although not explicitly a surface reconstruction algorithm, it is used by many other surface

reconstruction algorithms to generate the resulting polygonal mesh. It does this by tracking

13

2.1. RELATED WORK

Figure 2.4: An example of applying the Marching Squares algorithm.

values at the corners of a grid of cubes. These corners are marked as either being inside

or outside the intersecting surface. As there are 8 corners to a cube, there are 28 possible

combinations of corners being inside or outside the surface. The 8 values for a single cube

can be tracked using an 8-bit number, which is checked against a lookup table to find the

particular set of geometry that best represents the surface intersecting the cube in that man-

ner. This lookup is performed for each cube in the grid, and the resulting geometry is added

to the final mesh. The lookup table used in the Marching Cubes algorithm can be simplified

by recognizing that many entries in the table have rotational or mirrored equivalents. The

original work by Lorensen and Cline simplified this into a table with only 15 entries.

A two-dimensional example of the algorithm, known as Marching Squares, is shown in

Figure 2.4. In this figure, the lookup table for Marching Squares is shown on the left. On the

right, the original isosurface is shown by the thin black line. Points which are considered

to be inside the surface are black, while points outside the surface are white. The resulting

shape from running the Marching Squares algorithm is shown in gray.

The accuracy of a surface created by Marching Cubes can be improved by either in-

creasing the resolution of the underling grid or by altering the points at which the geometry

intersects the edges of each cube. Rather than forcing each intersection to happen at the

14

2.1. RELATED WORK

exact mid-point between two corners, the intersection point can be interpolated based on

the values at each corner. This requires tracking more than just a binary inside/outside flag

for each corner, but results in a much better fitting surface.

The original Marching Cubes algorithm suffers from some ambigious cases – situations

in which the algorithm is unable to determine a topologically correct set of geometry based

solely on the corner values of the cube. For example, Case 5 in the lookup table in Figure

2.4 shows two points as being inside the surface and two points outside the surface. The

ambiguity comes from not knowing whether or not the isosurface simply passes through

each respective side of the square or whether the isosurface creates a passage between the

two points. As a result of this ambiguity, there is no guarantee that the original March-

ing Cubes algorithm will produce a watertight mesh. Additional lookup tables have been

created to overcome this issue [13] [40].

A similar, but alternate method to Marching Cubes is Marching Tetrahedrons [47], or

Marching Tetrahedra. Rather than operating on a cube, Marching Tetrahedrons operates on

a single tetrahedron. As a result, the lookup table only needs to contain 24 elements, and

the resulting geometry does not suffer from the same ambiguity as Marching Cubes.

2.1.6 KinectFusion

The KinectFusion project uses a Microsoft Kinect sensor to capture a 3D scene [39]. It

does this by using a global model to track the overall scene, which comes in the form of

a signed 5123 volumetric grid. Changes in the position of the Kinect sensor are identified

using the iterative closest-point algorithm. As the sensor is moved around the scene, the

global model is updated to reflect newly captured data. The final visual of the scanned scene

is rendered using raycasting. This expensive process is carried out on the GPU (graphics

processing unit) in order to keep the global model updated at a near real-time speed of up to

10 Hz. Although the visual results from Kinect Fusion are impressive, there is no guarantee

of a watertight mesh being generated. This approach also relies on a significant amount of

15

2.2. MICROSOFT KINECT

Figure 2.5: Infrared depth image taken from a Microsoft Kinect.

GPU processing and is limited in resolution because of the maximum size of the internal

model. Some work has been done to adapt this approach to use an octree, with favourable

results [48].

2.2 Microsoft Kinect

The Microsoft Kinect is a commercially available 3D camera system that was released

by Microsoft in 2010. The sensor works by emitting a pseudo-random pattern of infrared

light, which is reflected off a scene and captured on a separate CMOS sensor [5]. Distur-

bances in the infrared light are used to measure depth via triangulation, and are captured

at a resolution of up to 640x480 at a rate of 30 times per second [25]. Figure 2.5 shows

an example of an infrared image captured by the Kinect infrared sensor. A model of the

Stanford bunny is faintly visible in the center of the image.

Two versions of the Kinect sensor are available – one as strictly a peripheral for the

Xbox 360 gaming console, and the other for use with computers running Microsoft Win-

16

2.2. MICROSOFT KINECT

dows. The Kinect for Windows sensor has a configuration setting which allows it to read

depth values between 0.4 m – 3.6 m, while the Xbox 360 version of the sensor is able to

read values between 0.8 m and 4.0 m [35]. Methods in the provided Software Developer Kit

(SDK) provide depth information in the form of a one-dimensional array of 16-bit values.

Out of the 16 bits, 3 bits are reserved for the player index – a value used to determine which

parts of the image are inhabited by a particular player. The remaining 13 bits contain the

captured depth value for a particular pixel.

The Kinect sensor has a horizontal field of view of 57◦ and a vertical field of view of

43◦. At a distance from the sensor of 1.0 m, both the horizontal and vertical resolution

(spacing between captured points) is 1.6 mm. It has been shown that the accuracy of values

coming from the Kinect sensor fall off in a non-linear fashion – meaning that depth values

measured closer to the sensor are more accurate than those measured further away from the

sensor [5]. In order to obtain accurate and high-resolution depth values, the Kinect sensor

must be kept as close as possible to the object being scanned while still being within the

valid scanning range. If the object being scanned is brought too close to the sensor, the

sensor is unable to obtain valid readings. Appendix A shows the hardware design used

in this work, which holds the Kinect sensor at a fixed position relative to the object being

scanned.

The Kinect also contains a color camera, microphone array, accelerometer, and tilt sen-

sor. Only the infrared sensor and tilt sensor are used in this work.

17

Chapter 3

The Voxel Octree Intersection Technique

As outlined in Chapter 1, the goal of this thesis is to create a system that uses low-cost,

commercially available hardware to produce a 3D watertight model of a scanned object.

With that general goal in mind, several restrictions were added:

• The technique must produce a watertight mesh, which should not require any addi-

tional processing prior to 3D printing.

• The technique must not use GPU processing.

• The technique must not use more than 2 GB of random access memory (RAM) when

performing and processing a reasonable sized scan..

The first restriction stems from the recent surge in popularity of 3D printing and the

descending prices of commercially available 3D printers. In order to 3D print an object

from a scan, the model produced from the scanner must be watertight. Many of the currently

available 3D scanning methods do not produce watertight meshes, and as a result, require

additional processing to fill holes or gaps in the model prior to 3D printing. This restriction

eliminates the need for additional post-scan processing, simplifying the overall process for

the end-user.

The second restriction eliminates any reliance on GPU based processing. Although

GPUs are becoming increasingly common, this restriction lowers the cost of the computer

needed to run the algorithm by removing the need for a GPU. If running the algorithm in

18

3. THE VOXEL OCTREE INTERSECTION TECHNIQUE

a cloud-computing environment, this restriction also allows for a greater selection of cloud

computing hosts, as cloud-based GPU processing is still reasonably uncommon.

The restriction on the amount of RAM allows the technique to run on systems that have

comparatively little system memory or that are running on older 32-bit operating systems.

Also, the particular implementation of the technique created for this thesis makes use of the

.Net based Microsoft XNA graphics library, which is a 32-bit library. Because of this, the

final program must be compiled as a 32-bit binary which cannot access more than 2 GB of

RAM. The XNA library was chosen because of its ease of use and robust vector and matrix

functions. If an alternate implementation of the technique makes use of a different vector

and matrix library, this restriction may be removed.

In order to accomplish the goal of creating a watertight 3D mesh with these particu-

lar restrictions in place, several different approaches were considered. The voxel octree

intersection technique takes the following general approach:

1. An object is placed on a rotatable scanning platform.

2. A depth image (snapshot) is recorded using the Kinect sensor. This snapshot is pro-

cessed and stored to disk.

3. The scanning platform is rotated by a configured amount and the previous step is

repeated. This is done until a configured number of snapshots have been taken.

4. After all the necessary snapshots have been acquired, each snapshot is read back from

disk. For each snapshot, valid adjacent depth pixels in the image are processed into

a set of triangles. Each triangle is tested against a tree structure, where nodes of the

tree are created and marked as being intersected by one or more triangles.

5. Once all triangles for all snapshots have been intersected into the tree, a collection of

all leaf nodes is retrieved from the tree.

19

3.1. OBJECT PLACEMENT AND DATA FILTERING

6. Each of these leaf nodes is used as a corner in a 3D cube. For each cube, an algorithm

checks the values of the corners of the cube and creates geometry that approximates

the intersecting surface.

7. The resulting geometry is written out to a stereolithography (STL) file.

After the scanner is initially calibrated and configured, the entire scanning process only

requires a single interaction from a user to initiate a scan, which results in a watertight 3D

model.

The voxel octree intersection technique makes use of a particular type of tree data struc-

ture to track regions of 3D space which are considered to be solid. An assumption is made

about the depth data coming from the Kinect sensor, which is processed in such a way

that adjacency information is used when entering the scanned data into the tree. The scan-

ning process adds additional information to this tree with each subsequent scan. After all

scanned data has been entered into the tree, the leaf nodes of the tree are extracted, and

a set of geometry is created for each leaf node. The resulting geometry forms a hollow,

watertight re-creation of the scanned object. This geometry is saved as an STL file – a file

format commonly used by 3D printers.

By using a tree-based data structure, processing times and memory consumption are

kept low. Redundant scanned data from subsequent scans is also handled without increas-

ing memory consumption, and the final resolution of the resulting mesh can easily be scaled.

This entire process is carried out on the CPU, so as to not require any GPU processing. Al-

though the idea of using octrees for storing spatial data is not a new idea, the voxel octree

intersection technique is unique. Alternate approaches rely on complex mathematical mod-

els, require higher quality scanned data, or are unable to generate watertight 3D meshes.

The approach taken by the voxel octree intersection technique avoids these issues while still

generating a watertight 3D mesh.

The design of the scanning hardware setup is found in Appendix A. A breakdown of

costs for the hardware design is found in Appendix B.

20

3.1. OBJECT PLACEMENT AND DATA FILTERING

3.1 Object Placement and Data Filtering

To begin a scan, the object being scanned is placed on the scanning platform. The

specific placement of the object on the platform is inconsequential as all scanned data is

transformed into a common coordinate space, however, the orientation of the object does

matter. Any portions of the object which cannot be seen by the scanner will be assumed

to be hollow. For example, if a solid cube is placed on the scanning platform and scanned,

the top, left, right, front, and rear of the cube will be included in the generated model. The

bottom of the cube will not be present in the generated model, as there is no way for the

scanner to see the bottom of the cube without changing the cube’s orientation relative to the

scanning platform. The voxel octree intersection technique relies on the assumption that

regions of 3D space are empty unless shown otherwise by data coming from the scanner.

In the example of a scanned cube, the resulting cube will have a hollow interior, as there is

no way for the scanner to know the contents of the interior of the cube.

Once the object has been placed on the scanning platform, the scanning process is ini-

tiated. In this process, a series of snapshots of depth data are recorded, with the platform

being rotated between snapshots. As mentioned in Chapter 2, data coming from the Kinect

sensor comes in the form of a one-dimensional array of 16-bit values. If the sensor is unable

to determine the depth of an object at a given location, a value of 0 is returned. Figure 3.1

shows the result of converting this one-dimensional array into a 640x480 grayscale image.

The model of the Stanford bunny is present in the center of the figure, and is sitting on the

center of the scanning platform. Regions where the scanner is unable to obtain a valid depth

values are marked in black. Lighter shades of gray represent depth values which are closer

to the sensor. With the Kinect sensor, the infrared emitter and infrared sensor are offset

by several centimeters. As a result, all objects in a scene have a shadowed edge, as the

sensor is unable to determine valid depth values where no infrared light falls. This shadow

is apparent in the figure along the left edge of the scanning platform and left edge of the

Stanford bunny.

21

3.1. OBJECT PLACEMENT AND DATA FILTERING

Figure 3.1: Greyscale depth values from the Kinect sensor.

What is not readily apparent in a single image is the amount of noise present in the

captured depth values. Depending on the material type of the object being scanned and

angle of the surface being contacted by the infrared light, the Kinect sensor may return

inconsistent values. For materials that absorb infrared light or that are reflective, subsequent

frames may alternate between returning valid and invalid values for a particular pixel.

Figure 3.2 shows the same scene as Figure 3.1, but regions where at least one invalid

depth value in the past ten captured snapshots are colored in red. The luminance of the red

Figure 3.2: Invalid depth values over a ten frame average.

22

3.1. OBJECT PLACEMENT AND DATA FILTERING

values correspond to the number of invalid values over a ten snapshot average – the brighter

the red, the more invalid values for that particular pixel over the ten snapshot average. This

is particularly visible as a soft (antialiased) edge along the border between the black and

red regions. The image on the right shows center of the image on the left, but zoomed in by

500%.

Because of the potentially noisy nature of the data, it may be desirable to apply a filter

to the depth data prior to saving it to disk. For example, a filter can be applied that will

average valid depth values for a given pixel over ten snapshots. A comparison of using

different data filters is shown in Chapter 4.

After the depth values are filtered, they are then converted into an array of world space

coordinates. The software developer kit provided by Microsoft contains a method to convert

the one dimensional array of values to a one dimensional array of world space coordinates

relative to the position of the depth sensor. Invalid depth values, or those that have a value

of 0, are converted to a world space coordinate of (0,0,0).

Next, a series of transforms is applied to the array of world space coordinates. This is

done to bring all captured snapshots into the same common coordinate space. For these

transforms, the Y axis points up from the scanning platform, the Z axis points in the direc-

tion from the upright portion of the scanner to the scanning platform, and the X axis points

to the right of the Kinect, as if positioned behind it.

These transforms are done by first applying a rotation on the X axis to counteract the

tilt of the Kinect sensor. This rotation is necessary, as in the default scanning position,

the Kinect sensor is tilted downard to best capture the contents of the scanning platform.

Depending on the size of the object being scanned, the sensor tilt can be adjusted. To

determine the value of this rotation, the tilt angle is obtained from the Kinect sensor via

the Software Developer Kit. Next, a translation is applied based on the distance between

the infrared sensor on the Kinect and center of the scanning platform. The value of this

translation is obtained from a previously configured setting. It is critical that the distance

23

3.3. TRIANGULATION AND THRESHOLDING

between the center of the scanning platform and position of the infrared sensor on the

Kinect is accurately measured for all three axes. Any discrepency between the configured

and actual distance will create mis-alignments of the combined snapshots, resulting in an

inaccurate scan. Finally, a rotation on the Y axis is applied based on the current rotation of

the scanning platform. These transformations may be skipped if the point being operating

on has a value of (0,0,0).

3.2 Clipping and Storing Captured Data

The clipping process limits the amount of data used in later steps. It does this by setting

any values that fall outside a specified range to zero. The minimum and maximum bounding

distances are optionally configured by the user prior to starting a scan. This allows the later

steps to only work with values that pertain to the object being scanned. For example,

without setting the minimum bounding value on the Y axis, the resulting model would

also include the scanning platform and the floor around the base of the scanner. As this is

undesirable, the minimum bounding value on the Y axis is set so that any values below the

height of the scanning platform are set to zero.

Once the transforms have been applied and the data has been clipped, the array contain-

ing the common coordinates space values is written to disk. It is important that this array

contains the same number of elements as the original one-dimensional array. Writing the

data to disk at this point allows the later portions of the process to be re-run with different

parameters without needing to re-capture the scanned data.

The process of capturing depth data, filtering it, converting it to a common coordinate

space, clipping it, and storing it to disk is repeated each time the scanning platform is

rotated. The process advances to the next step after the scanning platform has made one

full rotation.

24

3.3. TRIANGULATION AND THRESHOLDING

Figure 3.3: Two dimensional array of points used to create a series of triangles.

3.3 Triangulation and Thresholding

After the scanning platform has made one full rotation, each recorded snapshot is read

back from disk and is used to generate a set of triangles. Because we store the world-space

coordinates in the same order as the original one-dimensional array, we are able to make

certain assumptions based on the adjacency of elements in the array. We can visualize the

stored one-dimensional array in a similar manner to the originally captured depth image.

By linking three adjacent elements, we can create a triangle in world-space coordinates.

We can visualize the original depth image as a two-dimensional array of dimensions w∗h,

where w is the width of the original depth image and h is the height of the original depth

image. Figure 3.3 shows a scaled-down version of this array.

For each element in the array, two triangles are created. Supposing that i is our current

position in the array, the first triangle is formed using elements at i, i+ 1, and i+w. The

second triangle is formed using elements at i+ 1, i+w+ 1, and i+w. There are several

special cases where no triangles should be formed. These cases happen when:

• i mod width is equal to (w− 1) or when i/w is equal to (h− 1). When visualizing

25

3.3. TRIANGULATION AND THRESHOLDING

Figure 3.4: Consecutive depth points accidentally linking separate surfaces.

the data as a two dimensional array, no triangles should be generated when i is in the

last row or last column. Any attempt at doing so will result in an invalid triangle or

an attempt at reading outside the bounds of the array.

• Any of the three points of the triangle have a value of (0, 0, 0). This indicates that one

or more of the values in the original array was an invalid depth value or was removed

in the clipping process. Such values should not be used.

• The squared length of any side of the triangle exceeds a specified length, or threshold

value, indicating that at least one of the points of the triangle is on a different surface.

The triangle edge length check is performed to prevent triangles being formed which

would link unrelated geometry. Figure 3.4 depicts this situation, but in two dimensions. In

the 2D case, adjacent points are linked with lines. In the figure, lines A and B represent

the original surface being scanned. The series of points are recorded depth values, and the

thin lines connecting the points are the lines created by the triangulation step. The first

few points are connected as they follow along Surface A. The second-to-last line creates an

accidental bridge, connecting Surface A to Surface B, while in reality no such connection

exists. If this adjacent connection were included, it would create an inaccurate topology of

the surface being scanned. For this reason a threshold value is applied. For the 3D case,

if the squared length of any side of the triangle exceeds the threshold value, the triangle is

discarded. Comparing the squared length to the threshold value saves performing a square

26

3.4. OCTREE INTERSECTIONS

Figure 3.5: Similar scans with different threshold values applied.

root operation for each edge of every potential triangle. Although a single square root

operation is inexpensive, this test must be performed for every edge of every potential

triangle. From experimentation, a value of 0.0001 was found to be a suitable threshold

value. This value may be configured by the user prior to scanning, depending on the nature

of the object being scanned.

Figure 3.5 shows the effect of altering the threshold value. The scan on the left was

performed with an appropriate threshold value of 0.0001. The scan in the middle had

too large of a threshold value (0.001), resulting in bridges between unrelated geometry.

The scan on the right used too small of a threshold value (0.00001), resulting in missing

geometry in the final model. Particular problem areas have been circled in the figure.

The product of the triangulation step is a set of triangles which follow the approximate

contour of the surface of the object being scanned. This set of triangles is then passed to

the octree intersection step.

3.4 Octree Intersections

As previously mentioned, the voxel octree intersection technique uses an underlying

tree structure to track regions of 3D space that are marked as being solid. These individual

regions of space are known as voxels, or volumetric pixels. To track which voxels are

27

3.4. OCTREE INTERSECTIONS

marked as solid, triangles from the previous step are tested to see if they intersect any

portion of the tree.

As this process is somewhat involved, it will first be described in 2D. To begin, a tree

is created. In the 2D case, a quadtree is used – a tree whose root forms an axis-aligned

square, and each child of a node occupies exactly one quarter of the area of a parent node.

Each line from the previous step is run through a recursive process that begins at the root

node. A line is tested against the root to see if any portion of the root is intersected by the

line, or whether the line lies entirely within the root. If either case is found to be true, a

set of temporary child nodes are created for the root node. These temporary child nodes

are also tested to see if they intersect or contain the line. If they do, they are added as true

children to the root node, and the process recurses on these true children. At each step of

the process, prior to the intersection test, the size of the current node is tested to see if it is

less than or equal to a configured size. If the node size is equal to or below the configured

size, no additional tests are performed and a value is assigned to the node. The process is

then repeated for each line created by the triangulation step. The end result is a tree whose

nodes are intersected by or contain at least part of a line.

Figure 3.6 depicts this process happening in 2D. Figure A shows the root node and a

line generated from the triangulation step, which is being intersection tested against the root

node. Figure B shows the temporary child nodes created during the intersection test of the

root. As the bottom two nodes do not contain or intersect the line, processing continues on

only the top two nodes. The process recurses on these child nodes until child nodes of a

minimum size are reached. At this point, in Figure F, the leaf nodes of the tree represent

those regions of 2D space that were found to contain or intersect a line. These leaf nodes

are assigned a value which is used in the next step.

The 3D case works in the same manner as the 2D case. Rather than using a quadtree,

an octree is used – a tree in which each node can contain up to eight child nodes, and

each child contains exactly one eighth the volume of the parent node. In this particular

28

3.4. OCTREE INTERSECTIONS

Figure 3.6: A quadtree being intersected by a line.

implementation, each node in the tree contains references to eight potential children. These

references may be null, indicating that there is currently no data occupying that portion of

the tree. As intersection tests are performed and temporary child nodes are added to the

tree, these references are updated to point to the newly created temporary child nodes.

Like the 2D case, the 3D case defines each node by using an axis-aligned bounding

box. This allows each node to be constructed using only two 3D points – one to track the

minimum corner of the box and one to track the maximum corner of the box. The root

of the tree is also restricted such that all sides of the root node are of equal length. This

same restriction is applied to all nodes in the tree to simplify calculations when working

nodes at various points in the algorithm and to save memory. As with the 2D case, the

initial minimum and maximum corners of the root node can be determined beforehand by

examining the scanned data or can be set to a predetermined value.

Once the root node has been created, each triangle from the triangulation step is in-

tersection tested against the root of the tree. This is done using a very efficient triangle

to axis-aligned bounding box intersection test [3]. This triangle to axis-aligned bound-

29

3.4. OCTREE INTERSECTIONS

ing box intersection test works by first testing the axis-aligned bounding box against the

axis-aligned bounding box of the triangle. If these two intersect, it then attempts to find

a separating axis between the bounding box and the triangle. If no separating axis can be

found, the triangle and the axis-aligned bounding box are intersecting. This test will also

give a positive result if the triangle is contained entirely with in the axis-aligned bounding

box.

If the root node and triangle intersect, the same intersection test is performed for each

child node of the root. If a child is null at this point, a temporary child node is created

and the intersection test is performed against the temporary child. If the child node inter-

sects the triangle, the null reference in the parent node is updated to point to this newly

created temporary child node. If no intersection is detected, the temporary child node is

discarded. This process of performing intersection tests and creating temporary child nodes

is recursively continued until child nodes of or below a specified size are reached, or until

no additional intersections are found. For example, if working in world units of metres, a

minimum child node size of 0.001 would result in the process being recursively repeated

until child nodes with a size equal to or below 1 mm are reached. The result is a tree where

all leaf nodes in the tree are 1 mm in size or smaller, and any node in the tree is intersected

by at least one triangle.

A pseudocode listing of the recursive intersect function is found in Algorithm 1. It

operates on a leaf node and takes in as arguments a triangle to intersect and the size of

a final leaf node. For each node in the tree, at most 9 intersection tests will need to be

performed – one to determine if the parent node intersects, and eight tests to determine

if each of the children intersect. If the parent node intersection test is moved outside the

recursive function, the number of tests can be reduced to eight tests per node. If this is done,

it becomes necessary to perform an initial intersection test to see if the triangle in question

intersects the root node. When the recursive function reaches a leaf node, the node value

is set. To save memory, each leaf node is assigned only a single value rather than a value

30

3.4. OCTREE INTERSECTIONS

Algorithm 1 Recursive Intersection Test
function INTERSECT(Triangle t, float leafSize)

if nodeSize > leafSize then
Perform current node axis-aligned bounding box test against t
if current node intersects t then

for i = 0, i < 8 do
Get child node at position i
if node is null then Create temporary child node
end if
if Child node intersects t then

Assign child node to child node at position i
Child node -> INTERSECT(t, leafSize)

end if
end for

end if
else

Set nodeValue = 1.0
end if

end function

at each corner of the leaf. This value is used by the next step of the technique to generate

the polygonal mesh. In this case, all leaf nodes have a value of 1.0. Chapter 4 discusses the

effects of changing this value.

The particular nature of the octree allows the algorithm to quickly determine which leaf

nodes are intersected. For example, if wanting to achieve a leaf node size of 1.0 mm or less

and beginning with a root node that is 1.0 m in each dimension, it would take an octree with

a maximum height of 11. Table 3.1 shows the relationship between the tree height and leaf

node size for a tree with a root node size of 1.0 m.

This particular octree implementation also offers a sigificant advantage in terms of

memory consumption over simply allocating a 3D array of voxels. For a 3D array of voxels

to cover an area of 1 cubic meter and still have a resolution of 1 mm, it would be necessary

to allocate an array with 10243 – or just over one billion elements. In order to achieve

this while still remaining within the 2 GB memory restriction, each element would be re-

stricted in size to approximately 2 bits or less. The tree structure allows us to cover a large

volume with significant resolution and still allow a more detailed value for each region of

31

3.4. OCTREE INTERSECTIONS

Table 3.1: Relationship between tree height and node size for a 1.0 m root node.

Tree height Leaf size (in m)
0 1
1 0.5
2 0.25
3 0.125
4 0.0625
5 0.03125
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125
10 0.000976563

space while working within tight memory limitations. This assumes that not every region

of space within the cubic region is scanned and considered solid.

The octree has a performance advantage over a 3D array of voxels when performing

other operations on the tree. For example, when gathering all regions of space which have

been marked as solid from a 3D array of voxels, it is necessary to visit all elements in the

array. To perform this same operation on the octree, we recursively walk from the root

through the non-null references to the child nodes. By doing so, we reach the leaf nodes of

the tree, which are then returned. The functions to perform such operations are reasonably

simple.

The octree also makes it possible to easily scale the resolution of the final generated

model. As an input to the next step of the voxel octree intersection technique, a set of nodes

is required. Under normal circumstances this is the set of all leaf nodes from the tree. If

we desire to lower the resolution of the generated model, we can instead pass in a set of

non-leaf nodes which are all of the same height. If hL is the height of a leaf node in the tree,

we can effectively halve the resolution of the final generated model by returning all leaf

nodes of hL − 1 height. Obtaining such a set of nodes from the tree is a trivial operation.

Performing a similar operation on a 3D array of voxels requires sampling all of the voxel

32

3.5. ISOSURFACE GENERATION

data.

3.5 Isosurface Generation

As mentioned in Chapter 2, one of the most common algorithms for extracting a polyg-

onal surface from a voxel grid is the Marching Cubes algorithm. Although Marching Cubes

is a popular choice, it suffers from ambiguious cases where the algorithm is unable to de-

termine the correct intersection of the surface through the cube. If these ambiguous cases

are not handled correctly, the resulting polygonal mesh will not be watertight. This ambi-

guity can be resolved by either taking additional samples within the cube, or by consulting

additional lookup tables.

To avoid the need for re-sampling the scanned object or requiring additional lookup ta-

bles, a variant of the Marching Cubes algorithm is used. This algorithm, known as March-

ing Tetrahedrons or Marching Tetrahedra, divides a cube into six tetrahedrons. Values at

the four corners of each tetrahedron are obtained and checked against a lookup table to

determine which geometry should be created. The Marching Tetrahedrons algorithm does

not suffer from the same ambiguity as Marching Cubes, and as a result, always produces a

watertight polygonal mesh. The downside to the Marching Tetrahedrons algorithm is that

it may produce a final mesh containing a larger number of triangles than results obtained

from the Marching Cubes algorithm. Because our end goal is a watertight mesh for the

purpose of 3D printing or CNC machining, the number of triangles in the final mesh is not

a large concern.

Because we are working with a tree structure rather than a regularly-spaced voxel grid,

it is necessary to modify the Marching Tetrahedrons algorithm to work with this scenario.

These modifications are also necessary because each leaf in the tree only stores a single

value rather than eight values – one at each corner of the leaf. Although Marching Tetrahe-

drons works only a single tetrahedron at a time, it is still necessary to know all eight corner

values, as we still need to process all six tetrahedrons for each cube.

33

3.5. ISOSURFACE GENERATION

Figure 3.7: Gathering values for isosurface generation from neighboring nodes.

To get around the issue of only having a single value per leaf, we use values from

adjacent leaves and create a pseudo-voxel – a temporary voxel whose eight corners lie in

the center of eight different but adjacent nodes. For each node that is passed into this step

of the voxel octree intersection technique, we create eight pseudo-voxels. We then run the

Marching Tetrahedrons algorithm on these pseudo-voxels to obtain our final geometry.

Figure 3.7 depicts this process in 2D. In the figure, vertices A, B, C, and D are the

centers of four leaf nodes in the tree. For each leaf node in the tree, four pseudo-voxels

are created which use the center of the leaf node as one corner of the pseudo-voxel. For

example, for leaf node A, the pseudo-voxels, as represented by dashed lines, appear to

the upper right, upper left, lower right, and lower left of A. A recursive function is used

to obtain the value for each corner of the pseudo-voxel. If the corner of a pseudo-voxel

lands outside the tree or is not contained within a leaf node, a value of 0 is assigned to that

corner. When all the corner values for a pseudo-voxel have been obtained, the Marching

34

3.5. ISOSURFACE GENERATION

Tetrahedrons algorithm is run and the resulting geometry is added to the final mesh.

To avoid creating duplicate geometry, the centers of each pseudo-voxel are tracked in a

hash table. Prior to creating a pseudo-voxel, the hash table is checked to see if the center of

that potential pseudo-voxel already exists in the hash table. If it does, the process moves on

to work with the next pseudo-voxel. This prevents creating duplicate pseudo-voxels, which

in turn prevents creating duplicate geometry.

After the Marching Tetrahedrons algorithm has been run on all pseudo-voxels, the re-

sulting geometry is written to disk in the format of a Stereolithography (STL) file. This file

format is a commonly used file format for 3D printers, modeling software, and even graph

drawing software [2].

35

Chapter 4

Implementation and Results

4.1 Implementation

An implementation of the voxel octree intersection technique, along with the scanning

hardware described in Appendix A was created for this work. The software created consists

of several components – the main application, the client application which runs on the client

computer, and a separate application for viewing captured data and configuring the scanner.

Figure 4.1 shows the main application and calibration application. All software was written

in C#, which runs on the .Net framework. In order to run the C# client application on the

Rasberry Pi, which uses a Linux based operating system, it is necessary to install Mono

on the Raspberry Pi. Mono provides an implementation of the .Net framework for Linux

based operating systems.

The main application and client application on the Raspberry Pi communicate with each

other via the open-source Lidgren networking library. After the main application is started,

the client application is also started, and connects over the network to the main application.

When the main application requires the scanning platform to turn a given amount, it sends a

network message to the connected client indicating how far the platform should be rotated.

When the platform is finished rotating, the client application sends a message back to the

main application indicating that the platform rotation is complete, and that scanning can

continue.

36

4.1. IMPLEMENTATION

Figure 4.1: The main scanner application and data viewing application.

4.1.1 Configuring the Scanner and Performing a Scan

Prior to beginning a scan, the scanning system must be properly calibrated and config-

ured. Values for the triangulation threshold and the number of degrees per rotation are set

and the elevation angle of the Kinect is read from the sensor. When configuring the scanner

for first use, the distance between the center of the scanning platform and the center of the

Kinect’s infrared sensor is measured. This is done by placing a small object in the center

of the scanning platform. The calibration application is opened, and the user adjusts the X,

Y, and Z values so that the center of the object falls onto the Y axis, and the base of the

object is aligned with the X/Z plane. These X, Y, and Z values are recorded by the user

and entered into the settings of the main application. Values defining the minimum and

maximum clipping space and final scanning resolution may also be configured at this stage.

It is critical that the distance between the center of the scanning platform and the Kinect

be measured as accurately as possible. If off even by a few mm, the mis-calibration will

result in undesirable artifacts in the resulting scan. Figure 4.2 shows the difference between

a properly and improperly calibrated scan. Both scans show the underside of a scanned

Stanford bunny model. The scan on the left is poorly calibrated while the scan on the

right is properly calibrated. With the poorly calibrated scan, it is possible to distinguish the

different snapshots of data, and the mis-alignment results in visible spurs along the contour

37

4.2. ANALYSIS OF INTRODUCED ERROR

Figure 4.2: A poorly calibrated and a well calibrated scan.

of the object. If scanning artifacts are present in a scan, the X, Y, and Z distance values

should be adjusted and the object re-scanned.

To set up the scanner prior to performing a scan the main application is first started,

then the client application is started on the Raspberry Pi. The user then places an object

on the scanning platform, and clicks the Start Scan button. When the scan is complete, the

results are placed in the Scan.stl file located in the same directory as the main application

executable.

4.2 Analysis of Introduced Error

There are several sources of error to consider when using the combination of the de-

scribed scanning hardware and voxel octree intersection technique. These sources of error

include:

• Error in depth values recorded by the sensor.

• Error as a result of poor scanner calibration.

• Error introduced by the voxel octree intersection technique.

The first source of error to consider is error introduced by the Kinect sensor in the

captured depth values. Research has shown that values coming from the Kinect sensor tend

38

4.2. ANALYSIS OF INTRODUCED ERROR

to oscillate between several different states [25], and that the accuracy of values rapidly falls

off with distance [5]. Despite this, and the Kinect’s limited depth resolution, it is possible

to capture a set of values that reasonably represent the surface of the object being scanned.

The quality of the scanned data can be improved by filtering the data prior to passing it in

to the voxel octree intersection technique, as discussed in section 4.3.

The particular hardware setup used may introduce error as a result of mis-calibration.

For example, if the scanning platform and Kinect platform are not aligned in the same

plane on the X/Z axis, seams will be visible between captured snapshots when the mis-

aligned scans are combined. Also, if the various components of the scanner are not kept in

a fixed alignment with each other during the scanning process, the resulting data will not

be aligned after being combined into the common coordinate space. These sources of error

can be mitigated by ensuring that the scanner is properly calibrated prior to performing

a scan, and ensuring that the scanner is not moved during a scan. A different hardware

configuration may also help to reduce or eliminate such errors.

The voxel octree intersection technique will introduce some error into the final geometry

of the generated model. This error may be a result of:

• The threshold value being set too low or too high.

• Intersection tests marking entire leaf nodes as being intersected when the underlying

surface only intersects a small portion of the leaf node.

• Aliasing as a result of regularly spaced leaf nodes.

• An inability to generate especially thin features because of a minimum resulting

thickness in the final model.

Figure 4.3 depicts a simple 2D object being scanned from a single side, and the results

of running the voxel octree intersection technique on the scan. In the figure on the left,

the thick, light grey colored line represents the original surface being scanned. The small

39

4.2. ANALYSIS OF INTRODUCED ERROR

Figure 4.3: Introduced error in two dimensions.

dark points represent individual points captured by the scanner, and the thin lines linking

them together represent the lines created from the triangulation step of the technique. In the

figure on the right, the thin black lines represent the re-created surface which encapsulates

the grey area, creating a watertight shape. Although the voxel octree intersection technique

is based on a tree, regularly spaced leaf nodes in the diagram are shown as a grid for the

sake of clarity.

The lack of a line going from Point A to Point B in the figure is a result of the threshold

value being applied. Despite the underlying surface being present, if the length of the line

between the two points is greater than the threshold value, the line is not intersected against

the tree. As a result, the leaf node containing Point A is not marked as solid, despite the

data from the scanner potentially saying otherwise. In this sense, the data coming from

the scanner is somewhat ambiguous – there is no way of determining whether or not two

adjacent scanned points are actually connected on the real object without taking further

depth samples between the two points. With the voxel octree intersection technique, we

make the assumption that adjacent points are connected – up until the length between them

exceeds the threshold value. By doing this, we may be rejecting valid situations where two

adjacent points are indeed connected, and we may also be linking adjacent points which are

portions of two separate and distinct surfaces. By making such an assumption and making

a decision based on a configured threshold value, some error is introduced into the final

model. An exact measurement of this amount of error is dependent on the particular data

40

4.2. ANALYSIS OF INTRODUCED ERROR

being obtained, and the threshold value used.

In Figure 4.3 we also see that nodes surrounding Point B have been marked as solid.

This is because the line connecting from Point B to Point C passes through the corners of

the four nodes nearest to A. Although the line from B to C passes through an infinitely

small portion of these four nodes, the entire nodes are marked as solid. This does not

necessarily give an accurate depiction of the underlying surface. As a result, the final model

is considerably larger in that region.

In the same figure, Point C is a result of a scanning inaccuracy. The depth points cap-

tured by the Kinect sensor are limited in accuracy. As a result, the generated connecting

lines may not follow the exact surface of the object being scanned. This can be somewhat

mitigated by properly filtering the data during scanning, and discarding ambiguous or in-

valid data. Despite this, any inaccuracies in the filtered data will still have an effect on

the generated model. Although not a particular problem with the voxel octree intersection

technique, this source of error is visible in some of the results displayed later in this chapter.

In Figure 4.3, the underlying surface extends to the right beyond Point D, but there are

no captured points to the right of Point D. This may be a result of the next point being

eliminated due to thresholding, or an invalid reading because of the angle of the surface

of the object being scanned. The end result is that the generated model is missing some

features of the original scanned object.

The resulting model may also lack fine surface features of the original object. This lim-

itation can be explained in terms of the Nyquist rate. In order to be able to re-create details

of a particular surface, the surface must be sampled at twice the resolution of the desired

feature size [27]. For example, at a distance of 1.0 m, the horizontal spacing between cap-

tured depth points from the Kinect sensor is 1.6 mm. Because of the Nyquist rate, the finest

horizontal feature size that we can hope to obtain at a distance of 1.0 m is 3.2 mm in size.

41

4.2. ANALYSIS OF INTRODUCED ERROR

Figure 4.4: A portion of a scan showing aliasing.

4.2.1 Aliasing

One of the consequences of using a grid based approach is the introduction of aliasing

– the visible staircase effect that occurs when a continuous variable is mapped to a discrete

grid. Although the voxel octree intersection method is based on a tree, it suffers from the

same aliasing artifacts as a grid based approach because of two reasons:

1. It uses regularly spaced leaf nodes to generate the final geometry.

2. It uses Marching Tetrahedrons with input values that are either 0.0 or 1.0.

Aliasing is especially apparent along the outer edges of the generated mesh. Figure 4.4

shows an example of aliasing on the edge of a scanned model.

With the voxel octree intersection technique, all leaf nodes in the tree are of equal

size. When we are generating the final geometry, we consider only the leaf nodes and their

adjacent neighbors. This is essentially the same as operating on a 3D grid, the exception

42

4.2. ANALYSIS OF INTRODUCED ERROR

being how we access values in adjacent leaves. As a result, we suffer from the same sort of

aliasing that is apparent when working with a grid-based approach.

When working with the Marching Cubes or Marching Tetrahedrons algorithms, the

specific values at each corner of the cube or tetrahedron may be considered when creating

the final geometry. If we consider the corner values, we can interpolate the position of the

generated geometry. For each edge in the cube or tetrahedron, we interpolate the values

between two corners, and place the generated geometry at the interpolated position along

the edge. This results in a considerably better fitted surface. Figure 4.5 shows two shapes

constructed with the Marching Squares algorithm. The figure on the left shows a shape

constructed by the Marching Squares algorithm where all edges are intersected in the exact

mid-point between two corners. The figure on the right shows a better fitted surface as a

result of moving the edge intersection points based on interpolating between corner values.

Because we only store a single value for each leaf node in the tree, and that value is

either 1.0 or 0.0, the geometry created from the Marching Tetrahedrons algorithm is often

blocky looking. As we are using cube shaped nodes in the tree to designate areas of 3D

space that are occupied, the border areas between regions of solid and non-solid space occur

on right angles. Without taking into consideration values from surrounding nodes, there is

no way to interpolate between these regions in a way that does not produce geometry on

either 90◦ or 45◦ angles. If we use a node value other than 1.0 for nodes marked as solid,

we still have this same problem, as we are still interpolating between zero and non-zero

values.

Another way of reducing aliasing is to decrease the minimum size of the leaf nodes in

the tree. This is the equivalent of increasing the resolution of the underying grid when using

a grid-based approach. Results of changing the resolution are discussed in section 4.4. The

effects of aliasing may also be hidden by applying a surface smoothing operation such as

the Surface Nets algorithm to the generated mesh. This would give the resulting mesh a

much smoother appearance, but is beyond the scope of this work at this time.

43

4.2. ANALYSIS OF INTRODUCED ERROR

Figure 4.5: Marching squares without and with interpolation.

4.2.2 Worst Case and Minimum Thickness

To calculate the difference between the actual surface of the object being scanned and

the re-created surface, we consider the worst case. In this case, a single pseudo-voxel is

considered which has only a single corner marked as solid. The Marching Tetrahedrons

algorithm then divides this cube into six tetrahedrons. Because we only set corner values to

1.0 or 0, the calculated mid-points between the corners of each tetrahedron will always be

exactly half way between the solid and non-solid corners. The greatest distance from the

solid corner to any generated geometry is half the distance between opposing corners on

the cube. This distance is the euclidean distance between two points, and can be calculated

as
√

(w/2)2 +(h/2)2 +(d/2)2, where w is the width of the leaf node, h is the height of the

leaf node, and d is the depth of the leaf node. As all side lengths of the cube are equal, this

can be simplified to
√

3(s/2)2, where s is the length of any side of the cube.

The voxel octree intersection technique will always create a mesh of a minimum thick-

ness, where the thickness of the mesh is the distance between two opposing outer-facing

surfaces. Figure 4.6 depicts the thinnest possible generated geometry in 2D. Leaf nodes

marked as solid are indicated in grey. Pseudo-voxels are represented by dashed lines, and

leaf node centers are indicated by black points. In this case, a line has been intersected

against the leaf nodes, and a single series of leaf nodes have been marked as solid. Be-

cause the values of the leaf nodes are set to 1.0 when they are intersected, the Marching

Tetrahedrons algorithm will create geometry on the mid-point between the solid and non-

44

4.3. COMPARISON OF DATA FILTERS

Figure 4.6: A 2D mesh of minimum thickness created by Marching Tetrahedrons.

solid corner of the pseudo-voxel. This occurs with the pseudo-voxels on both sides of the

solid leaf nodes, resulting in a surface that is exactly the thickness of one leaf node. This

same principle applies in 3D – any captured feature will be represented with a minimum

thickness of one leaf node.

4.3 Comparison of Data Filters

Three selectable filters were created to process the depth data coming from the Kinect

sensor. These three filters are:

• Basic: Captures a single frame of data from the sensor without making any changes

to the data.

• Average: Captures multiple frames of data, and uses the average of these frames.

Invalid depth values are ignored, and average depth values are calculated using re-

maining valid values.

• Average-Discard: Captures multiple frames of data and uses the average of these

frames. For any particular depth pixel, if any of the frames contain invalid values for

that pixel, all values for that pixel are discarded.

45

4.4. COMPARISON OF RESOLUTIONS

Figure 4.7: Data from the Basic data filter converted to a grayscale image.

The intent of the Average and Average-Discard data filters is to provide more accurate

depth readings over the surface and edges of the object being scanned. By taking an av-

erage depth reading, the Average data filter removes oscilations between different depth

values, resulting in depth values that are more consistent with the surface of the object be-

ing scanned. The Average-Discard data filter takes this one step further by eliminating any

potentially questionable depth values. Figure 4.7 shows values coming from the Basic data

filter converted to a grayscale image.

Data coming from the Average and Average-Discard data filters may appear to be very

similar to data coming from the Basic data filter, but a closer inspection reveals small but

significant differences. Figures 4.8, 4.9 and 4.10 highlight these differences. Figure 4.8

shows the differences between the Basic and Average data filter over the course of ten

frames. These differences are highlighted in red, and show the oscillation in depth values,

especially as the distance from the sensor increases. This happens due to the quality of

depth data falling off with increasing distance on the Kinect sensor. Figure 4.9 shows the

differences between the Average and Average-Discard data filters over the course of ten

frames. Figure 4.10 also shows the differences between the Average and Average-Discard

data filters, but over the course of 250 frames. By averaging over a larger number of frames,

a greater number of questionable depth values are rejected. Note that the regions marked in

red in Figure 4.10 are somewhat thicker than in Figure 4.9.

46

4.4. COMPARISON OF RESOLUTIONS

Figure 4.8: (a) Figure 4.9: (b) Figure 4.10: (c)

Figure 4.11: Scans completed using various leaf node sizes.

4.4 Comparison of Resolutions

The detail of the final model is heavily influenced by the size of the leaf nodes chosen

during the intersection process. By keeping the size of the root node constant and changing

the size of the leaf nodes of the tree prior to begining the intersection tests, the overall effect

is that of changing the resolution of the final model. This is demonstrated in Figure 4.11.

In the figure, the original root node was given the dimensions of 1.0 in the X, Y, and

Z axis, and eight data snapshots were captured during the scan. The values listed below

each scan are the minimum leaf size in the tree. By decreasing the minimum leaf size,

47

4.5. ANALYSIS OF SPACE AND TIME EFFICIENCY

the effective resolution is increased, allowing the final model to have considerably more

detail. This is especially visible in the scan completed with the 0.5 mm leaf node size

– small features and fine noise are visible. As the minimum leaf size is increased, the

amount of detail and noise visible in the model decreases, as does the processing time

and final polygon count of the model. Table 4.1 shows the processing time, peak memory

consumption, and final polygon count of each processed scan.

Table 4.1: Processing times, memory consumption and polygon count with increasing leaf
size.

Minimum leaf size (mm) Processing time (s) Memory (MB) Polygon count
0.5 117.1 546.5 5142120
1 34.9 169.8 922916
2 22.7 94.7 205196
4 18.5 88.6 51408
5 18.5 84.5 51408
10 15.9 70.4 13712

An interesting effect is visible when comparing the polygon counts of the scans com-

pleted with a 4 mm and 5 mm minimum leaf node size. Although the minimum leaf node

size has changed, the effective resolution and final polygon counts remain identical. This is

visible in both Figure 4.11 and in the table. This is due to a combination of the original root

size and depth of the tree that will achieve such a minimum leaf node size. For example,

if a tree has a root node of size 10.0, and a desired minimum leaf size of 2.0, the tree must

reach a depth of 4. At this depth, the actual leaf size is 1.25. At each depth in the tree, the

child node size is half that of the parent node size. This means that any value chosen for

the minimum leaf node size between 1.25 and 2.5 will result in a tree of the same depth. In

the case of our 4 mm and 5 mm scans, both values fell within the range of values that gave

the same tree depth, essentially generating the same model. The difference in memory con-

sumption can be attributed to garbage collection in the .Net framework running at different

times.

48

4.5. ANALYSIS OF SPACE AND TIME EFFICIENCY

4.5 Analysis of Space and Time Efficiency

As shown in Table 4.1, memory consumption and final polygon counts increase expo-

nentially in relation to the depth of the tree. In the worst case, for a given depth of a tree

d, the number of leaf nodes in the tree is (2d−1)3, where a tree of d = 1 has a single node.

The maximum number of nodes in a tree d, is the sum of the maximum number of child

nodes for all depths of the tree up to d. Such a worst case is incredibly unlikely and even

physically impossible when working with trees with a non-trivial depth. The voxel octree

intersection technique makes the assumption that space is empty unless otherwise indicated

by data coming from the scanner. In order to achieve the worst case, the data would need

to indicate that all regions of a given space are solid. For this to happen, either invalid data

would need to be passed in from the scanner or the type of scanner used would need be

able to acquire depth measurements through solid material. Such data would indicate that

all space within the root node is solid, in which case using the voxel octree intersection

technique would give less than ideal results.

The total time necessary to process a scan depends on several factors: the number of

data points gathered from the scanner, clipping values on all three axes, the number of

triangles generated in the triangulation step, and the minimum leaf size for the tree. A

general formula for the time to complete a scan is:

(S∗n)+(i∗ t)+M (4.1)

In this formula, S is the time it takes to capture and filter a single snapshot, and n is the

number of snapshots in the total scan. The next pair of variables, i and t, are the time it

takes to intersect a single triangle and the total number of triangles to be intersected. The

specific value for i is dependent on the root node size, minimum leaf node size, and current

contents of the tree. The value for t is dependent on the number of triangles generated by

the captured data. The last variable, M, is the time it takes to generate the pseudo-voxels

and perform the Marching Tetrahedrons algorithm on them. This is also heavily dependent

49

4.6. FINAL PRINT COMPARISON

on the contents of the tree. A general estimation can be created by noting the time taken by

previous similar scans, and substituting in specific values as desired.

From experimentation, it was found that one significant performance limiting factor is

the number of triangle intersection tests performed for a given triangle. Early experiments

altered the structure of the tree so that each node could have up to 3x3x3 children. This

flattened the tree, but also greatly increased the number of intersection tests necessary when

processing a single triangle. Although each intersection test takes a fraction of a millisecond

to perform on decent hardware, the drastic increase in the number of intersection tests

resulted in remarkably worse performance.

Another major performance limiting factor is the time needed to generate geometry for

each pseudo-voxel. Prior to implementing a caching system, geometry was generated for

all neighbors of a given leaf node. This resulted in duplicate geometry and excessively large

STL files. A simple caching system was implemented to track the centers of each pseudo-

voxel which had already been processed. This significantly increased performance, but still

takes a large portion of the overall time when generating a scanned model. For example,

when creating a scan from eight snapshots with a minimum leaf size of 0.001, the total time

to generate a model was 35.0 seconds, with 8.1 of those seconds being spent processing the

pseudo-voxels and writing the resulting file to disk.

4.6 Final Print Comparison

Figure 4.12 shows two models and the results of scanning those models using the voxel

octree intersection technique and hardware as described in Appendix A. The original mod-

els are on the left while their scanned counterparts are on the right. A 30 cm ruler is included

in the figure for scale. All models were printed on a MakerBot Replicator 2 3D printer. The

Stanford Bunny model was scanned using the Average data filter with a 2 mm minimum

leaf node size while the dragon model was scanned using the Average-Discard data filter

and a 1 mm minimum leaf node size. The top portion of the dragon model was not printed

50

4.7. COMPARISON TO A COMMERCIALLY AVAILABLE SCANNER

Figure 4.12: Original models and their scanned equivalents.

due to the printer running out of filament near the end of the print job. No modifications

were made to the scanned models prior to their printing. As visible in the figure, both

models bear a reasonable likeness to their original counterparts.

Details from the Stanford Bunny model are shown in Figure 4.13. A small protrusion

is visible on the side of the Stanford Bunny scan, as indicated by the red arrow. Such a

protrusion is the result of a single errant depth value. The hollow interior of the model is

also visible along the bottom of the figure.

Despite the reasonable resemblance to the original models, the scanned models exhibit

a very rough surface which suffers from severe aliasing. As a result, the usefulness of such

models is somewhat limited when compared to meshes produced by alternative methods.

51

4.7. COMPARISON TO A COMMERCIALLY AVAILABLE SCANNER

Figure 4.13: A protrusion on a scanned model.

Figure 4.14: A partial scan of the Stanford Bunny.

4.7 Comparison to a Commercially Available Scanner

Figure 4.14 shows a partial scan of the Stanford Bunny model taken by a Creaform

Go!SCAN 3D scanner, which is capable of a 0.5 mm resolution. The Go!SCAN scan-

ner, which is a patterned light scanner, produces noticeably smoother looking results when

compared to the voxel octree intersection technique. It also captures at near real-time rates.

Although the Go!SCAN is neither the least nor most expensive 3D scanner, its $15,000

price is significantly higher than that of the hardware setup described in Appendix B.

52

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The voxel octree intersection method provides a way of using data from a commercially

available low-cost sensor to generate a watertight 3D mesh. First, data coming from the

sensor is filtered to ensure that following steps are working with valid data. Next, adjacency

information is extracted from the filtered data and is used to generate a set of triangles.

These triangles are then efficiently tested for intersections against the contents of a specially

designed tree data structure. The underlying tree data structure allows the algorithm to

mark regions of 3D space as being occupied in a memory efficient manner. By taking the

leaf nodes from the tree and finding their adjacent neighbors, we can use the Marching

Tetrahedrons algorithm to generate a set of watertight geometry. We can also easily scale

the detail in the resulting mesh by using all nodes from the tree which are of a given height.

The resulting geometry is watertight, and is immediately suitable for 3D printing or CNC

machining without the need for any additional processing.

Although the voxel octree intersection method produces watertight results while us-

ing little memory, resulting meshes are not smooth, and suffer from considerable aliasing.

Resulting meshes also have high polygon counts, and thus, are generally unsuitable for

real-time rendering when compared to meshes generated by alternative methods. Memory

consumption is also heavily tied to resolution – doubling the resolution requires eight times

the amount of memory.

Despite these drawbacks, the voxel octree intersection method provides a different ap-

53

5.2. FUTURE WORK

proach to generating meshes which are guaranteed to be watertight, using commercially

available low-cost hardware.

5.2 Future Work

Although the voxel octree intersection technique provides satisfactory results as shown

in Chapter 4, there is still room for improvement. The following areas of research may

prove to be valuable in increasing the performance and accuracy of the technique.

5.2.1 Improved Data Filters

Depth values coming from the Kinect sensor, particularly along acute object edges or

boundaries between distant objects have been shown to be quite noisy. For this reason, some

basic filters were developed and applied to help improve the quality of the data. Although

these filters did help, there is still room for improvement in increasing the general qualty of

the captured depth data. Rather than relying on a simple filter, a filter could use a predictive

model to get an even better estimate of values along object boundaries. Predictive methods

such as Kalman filtering have been used in analyzing depth values [32]. A predictive filter

would be able to assist in obtaining depth values along object edges. When re-constructing

objects that contain a significant number of distinct edges, a predictive filter could greatly

improve the quality of the resulting generated mesh.

5.2.2 Alternate Scanning Hardware and Cloud Based Processing

Even at its highest resolution, the quality of depth data provided by a Kinect depth

sensor is questionable when scanning small objects. In addition to having a relatively low

spatial resolution at a distance of 1 m, the depth data suffers from considerable noise. The

next generation of the Kinect depth sensor was revealed with the Xbox One gaming console

in May 2013, with plans to release a software developer kit for Windows announced in

March 2014 [37]. The newer Kinect sensor uses a time-of-flight based sensor which uses

timed pulses of infrared light to determine distances, and is able to capture depth images

54

5.2. FUTURE WORK

at a higher 1920x1080 resolution. It also features a wider field of view, and is able to

acquire valid depth values from objects that are closer to the sensor than the previous version

sensor [36]. Replacing the existing Kinect sensor with this newer Kinect sensor could have

a significant impact on the quality of captured data.

Rather than using a Kinect sensor, another option would be to acquire depth data from

a low-cost laser scanner. The accuracy of the laser scanner is dependent on several criteria,

including the laser line width, laser line quality, and resolution and quality of the optical

sensor [19]. A low-cost laser scanner could be constructed from a laser line diode and

camera module for the Raspberry Pi. With the Raspberry Pi’s camera module having a

maximum resolution of 2592x1944 [41], it should be able to give results similar to those

seen when using a DSLR camera [22]. By switching over to using data collected from a

laser scanner rather than a Kinect, the triangulation step would need to be altered to create

triangles using data from successive adjacent scans.

Using a laser scanner based solely on the Raspberry Pi could also eliminate the need

for both the computer running the Kinect sensor and the Kinect sensor itself. This would

lower the overall cost of the scanning setup, but would still require some external com-

puting power to perform the more computational and memory expensive operations. The

developed algorithm is quite CPU and memory intensive, but this work could be offloaded

to a cloud-computing system, with the results being sent back to the Raspberry Pi. If this

approach were taken, it would be wise to reduce the amount of data being stored to disk

and sent to the cloud. To do this, rather than storing the entire captured depth array, only

the list of valid triangles resulting from the triangulation step would be stored to disk and

sent across the network for processing. Although this would lower the amount of required

disk space and network traffic, it would also make it impossible to re-process the same data

using different triangulation thresholds.

55

5.2. FUTURE WORK

5.2.3 Parallelized Implementation

Performance of the voxel octree intersection technique is currently limited to running on

a single thread. This greatly limits performance, and does not make good use of computing

resources, especially in a multi-core and multi-threaded environment.

The simplest way of running the algorithm in parallel is to split the octree, and have one

core process the contents of half the tree. For example, if running on a computer capable

of running four simultaneous threads, the octree would be split into four – each thread

processing two adjacent child nodes of the root of the octree. Any triangles spanning these

root child nodes would need to be duplicated, so that each respective thread would have

a copy of the triangle. Because these triangles are duplicated, and because the way the

neighbour checks are done when generating the final geometry, there is no need to reconcile

the data between adjacent child nodes so long as the portion of code generating the final

geometry has access to all resulting portions of the octree.

Another option when attempting to increase the performance of the algorithm through

parallelism is running the algorithm on the GPU. It this sense, it would have similar sys-

tem requirements to KinectFusion. Work has shown that an octree based KinectFusion is

possible [48], and that GPU based parallel computing when working with octrees is also

possible [43].

5.2.4 Caching Systems

A caching scheme for the triangle intersection step of the technique may greatly increase

performance. When a triangle is intersection tested against the tree, the intersection tests

begin at the root of the tree and end at one or more leaf nodes. This requires intersection

tests to be performed at each level of the tree for each child at that level. Suppose the initial

dimension of the root node are 1.0 m in the X, Y, and Z dimensions and that the minimum

size of a leaf node is 1 mm. This means that each leaf node will be 1
1024 m in size. If the root

of the tree is considered to be at a height of 0, the leaf nodes will be at height 10. In order

56

5.2. FUTURE WORK

to determine which nodes are intersecting a given triangle, all 11 levels of the tree will need

to be tested. As the intersection test is capable of adding children to a given node, all 8

children must be tested for intersections. This means that at a minimum, 8∗11 intersection

tests will need to be performed for any given triangle, plus an additional intersection test to

see if the triangle initially falls within the bounds of the root node.

Because of the initial structure to the scanned data, subsequent triangles being inter-

section tested are likely to be in a similar local area. A combination of a small cache and

hashing scheme could be implemented to speed up these intersection tests. A hash of the

maximum axis-aligned bounding box of the triangle would be tested against the result-

ing hash of the last few nodes. If the hashes match, indicating that they both fall within

the same approximate dimensions within the tree, the intersection tests would begin at the

hashed node.

Rather than using a small cache, another way to improve performance would be to look

at the last leaf node accessed by the algorithm. Rather than starting at the root of the tree,

the algorithm would start at the last used leaf, and walk up the tree until it finds a node

that entirely encompasses the given triangle. The process would then recurse toward the

leaf nodes, as it currently does. This also takes advantage of the proximity of subsequent

triangles, and would only improve performance so long as triangles were in proximity of

each other. This means that when testing triangles found along the bounds of a snapshot of

data, performance may be worse, but the overall general case would still be better. Some

analysis into whether this method of walking up the tree, then back down may show an

improvement in performance.

5.2.5 Virtualized Scanning for Large Areas

The voxel octree intersection technique may be adapted for use in autonomous aircraft

used in mapping indoor and outdoor environments. Rather than using a single octree to

track a specified region of space, the technique could be modified to cover a larger area by

57

5.2. FUTURE WORK

using multiple octrees. Each tree would still track data which falls between its minimum

and maximum bounds. Data falling outside the bounds of one tree would be tracked in

neighboring trees. This would still allow each respective area to be scanned in detail while

only tracking areas where depth information is found.

58

Bibliography

[1] The hobbit: Weta returns to middle-earth. http://www.fxguide.com/featured/
the-hobbit-weta/. Accessed: 2014-05-14.

[2] 21st international symposium on graph drawing, gd2013. In 21st International Sym-
posium on Graph Drawing, GD2013, volume 8242 of Lecture Notes in Computer
Science, Berlin, Germany, 2013. Springer.

[3] Tomas Akenine-Möller. Fast 3d triangle-box overlap testing. In ACM SIGGRAPH
2005 Courses, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[4] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In Proceed-
ings of the sixth ACM symposium on Solid modeling and applications, pages 249–266.
ACM, 2001.

[5] M.R Andersen, T. Jensen, P. Lisouski, A. K. Mortensen, M. K. Hansen, T. Gregersen,
and P. Ahrendt. Kinect depth sensor evaluation for computer vision applications.
Technical Report ECE-TR-6, Department of Engineering - Electrical and Computer
Engineering, Aarhus University, feb 2012.

[6] Emmanuel P. Baltsavias. A comparison between photogrammetry and laser scanning.
ISPRS Journal of Photogrammetry and Remote Sensing, 54:83–94, 1999.

[7] Martin Bechthold. Teaching technology: Cad/cam, parametric design and interactiv-
ity. In Predicting the future–Proceedings of the 25th International eCAADe Confer-
ence, Frankfurt, pages 767–775, 2007.

[8] Fausto Bernardini and Chandrajit L Bajaj. Sampling and reconstructing manifolds
using alpha-shapes. 1997.

[9] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel
Taubin. The ball-pivoting algorithm for surface reconstruction. Visualization and
Computer Graphics, IEEE Transactions on, 5(4):349–359, 1999.

[10] Matthew Bolitho, Michael Kazhdan, Randal Burns, and Hugues Hoppe. Parallel
poisson surface reconstruction. In Advances in Visual Computing, pages 678–689.
Springer, 2009.

[11] Simon Bradshaw, Adrian Bowyer, and Patrick Haufe. The intellectual property impli-
cations of low-cost 3d printing. ScriptEd, 7(1):5–31, 2010.

[12] Glen Bull and James Groves. The democratization of production. Learning & Leading
with Technology, 37(3):36–37, 2009.

59

http://www.fxguide.com/featured/the-hobbit-weta/
http://www.fxguide.com/featured/the-hobbit-weta/

BIBLIOGRAPHY

[13] Evgeni V Chernyaev. Marching cubes 33: Construction of topologically correct iso-
surfaces. Institute for High Energy Physics, Moscow, Russia, Report CN/95-17, 42,
1995.

[14] Adir Cohen, Amir Laviv, Phillip Berman, Rizan Nashef, and Jawad Abu-Tair.
Mandibular reconstruction using stereolithographic 3-dimensional printing modeling
technology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and En-
dodontology, 108(5):661 – 666, 2009.

[15] Malcolm N. Cooke, John P. Fisher, David Dean, Clare Rimnac, and Antonios G.
Mikos. Use of stereolithography to manufacture critical-sized 3d biodegradable scaf-
folds for bone ingrowth. Journal of Biomedical Materials Research Part B: Applied
Biomaterials, 64B(2):65–69, 2003.

[16] Yan Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt. 3d shape scanning with
a time-of-flight camera. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 1173–1180, June 2010.

[17] Paul W de Bruin, FM Vos, Frits H Post, SF Frisken-Gibson, and Albert M Vossepoel.
Improving triangle mesh quality with surfacenets. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2000, pages 804–813. Springer, 2000.

[18] Klaus Engel, Markus Hadwiger, Joe M Kniss, Christof Rezk-Salama, and Daniel
Weiskopf. Real-time volume graphics. Ak Peters Natick, 2006.

[19] Hsi-Yung Feng, Yixin Liu, and Fengfeng Xi. Analysis of digitizing errors of a laser
scanning system. Precision Engineering, 25(3):185 – 191, 2001.

[20] Sarah FF Gibson. Constrained elastic surface nets: Generating smooth surfaces from
binary segmented data. In Medical Image Computing and Computer-Assisted Inter-
ventationMICCAI98, pages 888–898. Springer, 1998.

[21] Tom Greaves. Scanning in the streets. The American Surveyor, 5(11), December
2008.

[22] HackADay. 3d scanner with remarkable resolution. http://hackaday.com/2013/
05/15/3d-scanner-with-remarkable-resolution/. Accessed: 2014-05-01.

[23] MakerBot Industries. Makerbot digitizer. http://store.makerbot.com/
digitizer.

[24] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-
tion. In Proceedings of the fourth Eurographics symposium on Geometry processing,
2006.

[25] K. Khoshelham. Accuracy analysis of kinect depth data. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-
5(W12):133–138, aug 2011.

60

http://hackaday.com/2013/05/15/3d-scanner-with-remarkable-resolution/
http://hackaday.com/2013/05/15/3d-scanner-with-remarkable-resolution/
http://store.makerbot.com/digitizer
http://store.makerbot.com/digitizer

BIBLIOGRAPHY

[26] Josef Kohout, Michal Varnuka, and Ivana Kolingerov. Surface reconstruction from
large point clouds using virtual shared memory manager. In Marina Gavrilova, Os-
valdo Gervasi, Vipin Kumar, C.J.Kenneth Tan, David Taniar, Antonio Lagan, Young-
song Mun, and Hyunseung Choo, editors, Computational Science and Its Applications
- ICCSA 2006, volume 3980 of Lecture Notes in Computer Science, pages 71–80.
Springer Berlin Heidelberg, 2006.

[27] H.J. Landau. Sampling, data transmission, and the nyquist rate. Proceedings of the
IEEE, 55(10):1701–1706, Oct 1967.

[28] Michael E Leventon and Sarah FF Gibson. Model generation from multiple volumes
using constrained elastic surfacenets. In Information Processing in Medical Imaging,
pages 388–393. Springer, 1999.

[29] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lu-
cas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan
Shade, and Duane Fulk. The digital michelangelo project: 3d scanning of large stat-
ues. In Proceedings of the 27th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’00, pages 131–144, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[30] Hod Lipson and Melba Kurman. Fabricated: The New World of 3D Printing. Wiley,
Indianapolis, IN, 2013.

[31] Claudio Lobos, Yohan Payan, and Nancy Hitschfeld. Techniques for the generation
of 3d finite element meshes of human organs. arXiv preprint arXiv:0911.3884, 2009.

[32] Larry Matthies, Takeo Kanade, and Richard Szeliski. Kalman filter-based algorithms
for estimating depth from image sequences. International Journal of Computer Vision,
3(3):209–238, 1989.

[33] Popular Mechanics. Jay leno’s 3d printer replaces rusty old parts. http://www.
popularmechanics.com/cars/jay-leno/technology/4320759. Accessed 2014-
05-13.

[34] R. Mencl and H. Muller. Interpolation and approximation of surfaces from three-
dimensional scattered data points. In Scientific Visualization Conference, 1997, pages
223–223, June 1997.

[35] Microsoft. http://msdn.microsoft.com/en-us/library/hh973078.aspx#
Depth_Ranges. Accessed: 2014-05-01.

[36] Microsoft. Kinect for windows features. http://www.microsoft.com/en-us/
kinectforwindows/discover/features.aspx. Accessed: 2014-05-01.

[37] Microsoft. Revealing kinect for windows v2 hardware. http:
//blogs.msdn.com/b/kinectforwindows/archive/2014/03/27/
revealing-kinect-for-windows-v2-hardware.aspx. Accessed: 2014-05-
01.

61

http://www.popularmechanics.com/cars/jay-leno/technology/4320759
http://www.popularmechanics.com/cars/jay-leno/technology/4320759
http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2014/03/27/revealing-kinect-for-windows-v2-hardware.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2014/03/27/revealing-kinect-for-windows-v2-hardware.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2014/03/27/revealing-kinect-for-windows-v2-hardware.aspx

5.2. FUTURE WORK

[38] NASA. Nasa tests limits of 3-d printing with powerful rocket engine check. http:
//www.nasa.gov/exploration/systems/sls/3d-printed-rocket-injector.
html. Accessed: 2014-05-13.

[39] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In Mixed
and Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on, pages
127–136, Oct 2011.

[40] Gregory M. Nielson and Bernd Hamann. The asymptotic decider: Resolving the
ambiguity in marching cubes. In Proceedings of the 2Nd Conference on Visualization
’91, VIS ’91, pages 83–91, Los Alamitos, CA, USA, 1991. IEEE Computer Society
Press.

[41] Raspberry Pi. Faqs - raspberry pi. http://www.raspberrypi.org/help/faqs/
#camera. Accessed: 2014-05-02.

[42] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno. A low cost 3d scanner
based on structured light, 2001.

[43] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxelization
on gpus. In ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, pages 179:1–
179:10, New York, NY, USA, 2010. ACM.

[44] David M. Shotton. Confocal scanning optical microscopy and its applications for
biological specimens. Journal of Cell Science, 94:175–206, 1989.

[45] S.N. Sinha, D. Steedly, and R. Szeliski. Piecewise planar stereo for image-based
rendering. In Computer Vision, 2009 IEEE 12th International Conference on, pages
1881–1888, Sept 2009.

[46] Debbie Sniderman. 3d scanning options. Desktop Engineering, pages 20–23, jan
2011.

[47] David F Watson. Contouring, volume 5.

[48] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. Octree-based fusion for
realtime 3d reconstruction. Graphical Models, 75(3):126 – 136, 2013. Computational
Visual Media Conference 2012.

[49] Scott Zimmer. The right to print arms: the effect on civil liberties of government
restrictions on computer-aided design files shared on the internet. Information &
Communications Technology Law, 22(3):251–263, 2013.

62

http://www.nasa.gov/exploration/systems/sls/3d-printed-rocket-injector.html
http://www.nasa.gov/exploration/systems/sls/3d-printed-rocket-injector.html
http://www.nasa.gov/exploration/systems/sls/3d-printed-rocket-injector.html
http://www.raspberrypi.org/help/faqs/#camera
http://www.raspberrypi.org/help/faqs/#camera

Appendix A

Scanner Design

The 3D scanner created for this thesis was designed to use low-cost, commercially available
hardware components. All components for the scanner were either purchased online, at
local hardware stores, or were 3D printed. The following contains a brief overview of the
scanning hardware, electronics, and software created for the scanner.

A.1 Scanner Hardware Design
Figure A.1 shows a general overview of the scanner, excluding the Kinect sensor and

electronic components. The scanner is constructed from 1/2 inch (1.27 cm) baltic birch
plywood. The plywood portions of the design are fastened using wood screws, unless
otherwise indicated.

The Kinect platform is held in place by sliding a pair of 1/4 inch bolts through holes
drilled in both the tower and the Kinect platform. These regularly spaced holes along the
height of the tower allow the Kinect platform to be moved up or down, depending on the
size of the object being scanned. The Kinect is held on to the Kinect platform by a 3D
printed bracket, which is bolted to the Kinect platform with a 1/4 inch bolt. This allows
the Kinect sensor to be securely attached to the platform without causing damage to the
sensor, allowing it to be re-used in other projects. The tower is attached to the rest of the
scanner via a pair of 1/4 inch bolts. This allows the tower portion of the scanner to be
removed, allowing for easier transport. If either the Kinect platform or tower is removed
and replaced, the scanner must be re-calibrated prior to use.

Details of the scanner base are shown in A.2. The scanner base consists of several
supports, a small metal plate, a stepper motor, and a ‘lazy susan’ style bearing. The metal
plate contains a round hole in the center, allowing the stepper motor to protrude through it.
The stepper motor is attached to the plate with 6 mm bolts, and the plate is then screwed
into the rest of the scanner base using wood screws. One side of the stepper motor shaft
is keyed to allow it to grip a 3D printed bracket that is attached to the underside of the
scanning platform. The ‘lazy suzan’ style bearing is also secured to the scanner base using
wood screws. The 3D printed bracket is attached to the bottom of the scanning platform
using self-tapping metal screws. A 1/4 inch hole drilled in the center of the platform allows
the scanning platform and 3D printed bracket to be lowered onto the keyed shaft of the
stepper motor.

This particular hardware design ensures that the object being scanned and Kinect are
held in a fixed position relative to each other. This eliminates the need for registering scans

63

A.1. SCANNER HARDWARE DESIGN

Figure A.1: An overview of the scanning hardware setup.

Figure A.2: Expanded details of the scanner base, in exploded view.

64

A.2. ELECTRONICS

Figure A.3: A scan showing non-planar platforms.

with a base model or explicitly tracking scanner movements, such as that done by Kinect
Fusion [39].

In general, the design has proven to be robust enough to allow for the results shown
in Chapter 4. The only issue encountered early on was that of some torsion of the frame
between the tower and scanner base. As a result, the scanning platform and Kinect platform
were not perfectly aligned within the same plane. This effect is visible in Figure A.3. If
the scanning platform and Kinect platform were in perfect alignment, the portions of the
scanning platform included in the scan would have been uniform on all sides of the object.
To hide this, the lower clipping value on the Y axis was increased so that no portions of
the scanner platform were included in any of the scans. Although this hid the problem, it
also resulted in the bottom few mm of each scan being removed in the clipping step of the
technique. To prevent this from happening, future designs should consider increasing the
rigidity of the scanner structure, adding supporting legs to the tower, or add a method of
adjustment to the Kinect platform to allow its roll to be adjusted.

A.2 Electronics
The electronic components of the hardware design include a Raspberry Pi computer,

a stepper motor controller, and a stepper motor. The Raspberry Pi receives signals across
the network from the computer running the Kinect sensor. These signals instruct the Pi
to turn the platform by a given amount. The Raspberry Pi then uses its GPIO (General
Purpose Input Output) pins to send a signal to a stepper motor controller which turns the
platform by a given number of steps. The stepper motor controller used in this setup was a

65

A.2. ELECTRONICS

A4988 based unit. This unit is powered from the same small brick-like power supply which
provides both the 5v for the logic and the 12v for the stepper motor.

To enable finer grain control when performing a scan, microstepping is enabled on the
stepper motor controller. The A4988 supports several degrees of micro-stepping, including
quarter-stepping, which was chosen for this application. Although the stepper motor con-
troller supports up to sixteenth step microstepping, quarter stepping was found to provide
more than adequate resolution without losing too much torque. With quarter-stepping en-
abled, the stepper motor turns 0.45 degrees per step, as opposed to the default 1.8 degrees
per step.

The particular stepper motor chosen for this application is a uni-polar stepper motor
capable of generating 125 oz./in (0.88 n/m) of torque. Enabling micro-stepping on the
stepper motor controller does reduce this torque, but it has proven to still be adequate for the
purposes for which it is used. For scanning heavier objects, it may be desireable to include
a reduction gear system to allow for even greater torque to turn the scanning platform.

66

Appendix B

Cost Breakdown

As previously mentioned, one goal with this work is to keep the cost of a 3D scanner as
low as possible. This is achieved by using low-cost, off the shelf, commercially available
components. Table B.1 is a breakdown of costs associated with the project. All prices are
stated in Canadian dollars, and do not include taxes or shipping costs on components, the
computer running the Kinect sensor, networking equipment connecting the computer and
Raspberry Pi, and other minor incidental costs such as the cost of screws and 3D printed
brackets. Parts may not be available in all regions, but substitute parts may be used so long
as they perform the same function as the parts listed below.

Table B.1: Approximate cost of scanning hardware.

Description Approximate cost
Microsoft Kinect for Windows $140
1/2” (1.27 mm) Baltic birch plywood $50
Lazy suzan style bearing $13
Stepper motor $25
A4988 stepper motor controller $10
Raspberry Pi $40
Power supply for stepper and stepper motor controller $15
Total: $293

For our particular scanner, the baltic birch plywood was sourced from scrap material,
the lazy suzan style bearing was purchased from a local hardware store, and the remaining
materials were acquired from various online sources.

67

	Approval/Signature Page
	Contents
	List of Tables
	List of Figures
	Introduction
	3D Printing
	Uses of 3D Printing

	Watertight Geometry
	3D Scanning
	Contact-Based Scanning
	Contactless Scanning
	Uses of 3D Scanning

	Objectives
	Structure of this Document

	Related Work and the Microsoft Kinect
	Related Work
	Ball-Pivot Algorithm
	Surface Nets
	Power Crust
	Poisson
	Marching Cubes and Marching Tetrahedrons
	KinectFusion

	Microsoft Kinect

	The Voxel Octree Intersection Technique
	Object Placement and Data Filtering
	Clipping and Storing Captured Data
	Triangulation and Thresholding
	Octree Intersections
	Isosurface Generation

	Implementation and Results
	Implementation
	Configuring the Scanner and Performing a Scan

	Analysis of Introduced Error
	Aliasing
	Worst Case and Minimum Thickness

	Comparison of Data Filters
	Comparison of Resolutions
	Analysis of Space and Time Efficiency
	Final Print Comparison
	Comparison to a Commercially Available Scanner

	Conclusion and Future Work
	Conclusion
	Future Work
	Improved Data Filters
	Alternate Scanning Hardware and Cloud Based Processing
	Parallelized Implementation
	Caching Systems
	Virtualized Scanning for Large Areas

	Bibliography
	Scanner Design
	Scanner Hardware Design
	Electronics

	Cost Breakdown

