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ABSTRACT 

The purpose of the current study was to investigate the relationship between participation 

in the Kumon Mathematics programme and children’s achievement in Mathematics and 

whether or not this relationship is different for children of varying academic abilities. 

Twenty-two students in grades four through six participated in the study. A 

nonexperimental, causal comparative research design was employed to answer the 

research question. Children were administered the Canadian Achievement Test, Third 

Edition (CAT-3) and the Canadian Cognitive Abilities Test (CCAT) shortly after 

beginning the Kumon programme. Six months later, the CAT-3 was re-administered.  

Results suggest that there may be a significant relationship between participation in the 

Kumon programme and development in computation skills (p = 0.053), but not with 

development in mathematical reasoning skills (p = 0.867).  Results also suggest that there 

is a significant, negative relationship between pretest computation scores and gains made 

in computation skills (p = 0.005). The conclusions drawn from the results of this study 

are that Kumon may be more effective as a remediation programme than it is as an 

enrichment programme. More specifically, Kumon may be a more effective remediation 

programme for computation skills versus mathematical reasoning skills. However, there 

are major limitations to the current study, namely a small sample size. As such, statistical 

analyses were made for exploratory purposes only and no statements can be made 

regarding the effectiveness of Kumon for children.  
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 1 

 CHAPTER I: INTRODUCTION

Summary of Literature Review 

Typical Development in Mathematics 

 Research has shown that some very basic Mathematics skills are innate (Butterworth, 

2005; Shalev, 2004). The more advanced skills, such as enumeration, correspondence 

construction, counting, Arithmetic, and understanding of arithmetical concepts, develop 

sequentially through instruction (Ardila & Rosselli, 2002; Butterworth, 2005; Klein & 

Starkey, 1987). These skills, and the sub-skills that comprise them, progress from 

acquisition to mastery. Once the skills are mastered, they can be used as a foundation for 

the acquisition of the next, more advanced skill in the hierarchy. Most of the skills in the 

elementary school Mathematics curriculum are taught this way. For example, 

multiplication is often taught as a series of addition problems (Butterworth, 2005). The 

vast majority of children acquire mathematical abilities in this manner and their 

achievement matches the expectations outlined in their school board’s curriculum. 

However, there are also many children who demonstrate either above or below average 

achievement.  

Giftedness in Mathematics 

Many different criteria are used for classifying children as gifted in the literature. To 

formally identify an individual as mathematically gifted, the child must be assessed using 

a measure of cognitive ability [specifically a measure of nonverbal reasoning ability 

(Preckel, Goetz, Pekrun, & Kleine, 2008)]. However, several researchers have used 

achievement tests to group children who may be gifted (Ma, 2005; Mills, Ablard, & 

Gustin, 1994; Niederer, Irwin, Irwin, & Reilly, 2003; Swanson, 2006; Threlfall & 

Hargreaves, 2008). These researchers typically refer to these children as “talented” or 
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“precocious”, in recognition that achievement test scores are not adequate for classifying 

children as gifted.  Similarly, the current study defines a child as “gifted” in Mathematics 

if he or she scores at or above the 97th percentile on a measure of mathematical 

achievement.  

Giftedness occurs in individuals of all ages and in both genders. However, of the 

individuals who meet criteria for giftedness in Mathematics, there are more males than 

females (Preckel et al., 2008). There are observable differences between gifted students 

and non-gifted students. There has been debate as to whether these differences are 

qualitative (life-long differences in thinking processes), quantitative (precocity), or both 

(Shore & Kanevsky, 1993; Winner, 2000a). There is also a nature/nurture debate as to the 

origins of giftedness. Again, it may be that both nature and nurture contribute to 

giftedness. 

The need for Mathematics interventions has largely been ignored to the detriment of 

the mathematically gifted. Without enrichment, gifted students are at risk for loss of 

motivation, under-achievement, unhappiness, poor mental health, and social isolation 

(Ma, 2005; Winner, 2000b). Strategies that have proven to be effective in evading these 

risks and enhancing achievement in Mathematics for mathematically gifted students 

include acceleration, flexible pacing, ability grouping, and school-based enrichment 

classes. Further research into effective interventions that address the special needs of 

mathematically gifted children is warranted.  

Mathematics Disorder 

The expression of Mathematics Disorder (MD) is heterogeneous (Geary, 1993; 

Kronenberger & Dunn, 2003; Mazzocco & Myers, 2003). In 1983, Badian proposed five 
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MD subtypes based on the different ways MD is expressed: Alexia and Agraphia for 

numbers, Spatial Dyscalculia, Anarithmetria, Attentional-Sequential Dyscalculia, and 

Mixed Types of Dyscalculia. Later, Geary (1993) suggested that MD should be divided 

into three subtypes: Semantic Memory, Procedural, and Visuo-spatial. Both models have 

received empirical support (Mazzocco, 2001; Shalev, Manor, Auerbach, & Gross-Tsur, 

1998); however, neither model is universally accepted, nor is it universally accepted that 

MD subtypes exist. Most researchers do agree, though, that there is heterogeneity in the 

expression of MD. 

MD is fairly prevalent in the school-aged population. Although estimates vary 

throughout the literature (largely because of differences in researcher’s definitions and 

diagnostic criteria for the disorder), most estimates are between 5 and 8% (Geary, 2003, 

Gross-Tsur, Manor, & Shalev, 1996; Lewis, Hitch, & Walker, 1994; Shalev, Auerbach, 

Manor, & Gross-Tsur, 2000). Although comorbidity rates are also variable throughout the 

literature, children with a MD are often reported to have comorbid ADHD and/or RD 

(Badian, 1983; Geary, 2003; Gross-Tsur et al., 1996).  

Several factors influence the prognosis for a child with a MD, including “the severity 

of the disorder at the time of initial diagnosis and the presence of Arithmetic problems in 

the siblings” (Shalev, 2004, p. 766). In approximately 50% of cases, teenagers diagnosed 

in childhood with a MD continue to experience significant difficulties with Mathematics 

(Shalev et al., 1998). In the remaining instances, the severe difficulties associated with 

MD abate, although many still display poor performance in Mathematics. 

MD can be attributed to many factors, including genetic, neurological, environmental, 

and psychological. Twin (Alarcon, Defries, Gillis Light, & Pennington, 1997) and family 
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studies (Shalev et al., 2001) have demonstrated that MD is heritable. Neuro-imaging has 

revealed differences in brain activation between typically developing individuals and 

individuals with a MD when solving mathematical problems. More specifically, the 

majority of studies find differences in the activation of the intraparietal sulcus areas 

(Butterworth, 2005; Dehaene, Piazza, Pinel, & Cohen, 2003; Issacs, Edmonds, Lucas, & 

Gadian, 2001; Molko et al., 2003). Environmental factors such as adequacy of instruction 

(Shalev, 2004), speed of teaching (Cumming & Elkins, 1999), classroom size, student 

diversity, mathematic curricula, and mainstreaming (Miller & Mercer, 1997) can all 

influence a child’s achievement in Mathematics and compound the effects of a MD. 

However, they do not cause MD (Learning Disabilities Association of Ontario, [LDAO], 

2009). Psychological factors, such as mathematical anxiety, can also contribute to, but do 

not cause, significant difficulties in Mathematics. In sum, the etiology of MD is multi-

factorial and there are many variables that can further exacerbate difficulties in 

Mathematics. 

Typically developing children and children with a MD experience difficulties in 

Mathematics. However, due to genetic and neurological differences, there are differences 

in the expression of Mathematics difficulties between the two groups. According to the 

behaviourist model, all skills are acquired by progressing through the stages of the 

learning hierarchy (acquisition, fluency, generalization, and adaptation) (Jolivette, Lingo, 

Houchins, Barton-Arwood, & Shippen, 2006; Scott, 1993; Shalev, 2004). Difficulties 

experienced by all children in achievement will occur within one of these stages. The 

difference between the difficulties experienced by children with a MD and typically 

developing children is quantitative according to the behaviourist model. Children with a 
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MD experience the same types of difficulties as typically developing children, they 

simply experience more of these difficulties. Cognitive theorists, on the other hand, 

believe that mathematical achievement is different for individuals with a MD and 

typically developing individuals because individuals with a MD have qualitatively 

different psychological processing skills (visuo-spatial processing, attention, memory, 

inhibition, and speed of processing).   

Scientific knowledge of effective treatments for children with a MD is inadequate. Of 

the few strategies and programmes that are suggested in the literature, the majority are 

insufficiently researched and understood. In practice, many school aged children with 

significant difficulties in Mathematics receive withdrawal support at their school. This 

means that the student spends the majority of his or her time in a regular class, but that he 

or she also receives instruction outside the classroom (for less than 50 per cent of the 

school day) from a qualified special education teacher. There are also specific 

intervention programmes described in the literature for children with significant 

difficulties in Mathematics including Great Leaps Math and Cover, Copy, Compare. 

Unfortunately these programmes are inadequately researched. 

The most promising intervention programme, in the current author’s opinion, is 

Kumon. Millions of children are enrolled in Kumon, making it the most widely used 

after-school programme worldwide (Kumon North America, [KNA], 2008). Although the 

majority of children enrolled in Kumon are typically developing and gifted children, 

Kumon also serves thousands of children with disabilities (Kumon Toru Research 

Institute of Education, [KTRIE], 2002). There is currently very limited scientific 

evidence of Kumon’s effectiveness despite its widespread use. 
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Kumon 

The Kumon Method of Learning has seven components: individualized learning, 

independent learning, comfortable starting point, curriculum, repeated practice, mastery, 

and advanced level of study (Izumi, 2001). Both Kumon programmes (Reading and 

Mathematics) were created based on this Method.  

The Mathematics programme has twenty-three levels (KNA, 2008). The skills taught 

in each level correspond with the skills taught from preschool to the university level 

(KNA, 2008). The difference between Kumon and public education is the method of 

instruction, or Method of Learning. 

The only empirical study regarding Kumon located in a recent PsycInfo search was a 

study investigating the effect of the Kumon Mathematics programme on the 

mathematical achievement of economically disadvantaged children (McKenna, 

Hollingsworth, & Barnes, 2005). Although the study had several limitations, such as 

including grade two students in their sample [performance in Mathematics in grades one 

and two is highly variable and not indicative of true ability (American Psychiatric 

Association, [APA], Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition, Text Revision, [DSM-IV-TR], 2000)], their results suggest that Kumon enhances 

children’s mathematical achievement (McKenna et al., 2005).  

Kumon serves children of varying ability and achievement (KTRIE, 2002). There is 

no systematic research evaluating the effectiveness of Kumon for children outside of the 

average ability range (for either the below or above average ranges). However, there is 

one published case report that describes an adolescent with Down Syndrome and his 

experience with the Kumon Mathematics programme (Haslam, 2007). In the adolescent’s 
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mother’s opinion, Kumon helped her son improve his Math skills (Haslam, 2007). It is 

reasonable to predict that the Kumon programme will help children with Learning 

Disabilities (LD) above average, and gifted children to develop their Mathematics skills 

because the special needs of these children are so well met by the tenets of the Kumon 

Method of Learning. Presently, systematic research is needed to determine whether this is 

true in practice. 

Potential Contribution of Current Study 

The current research project is necessary and important for two reasons: 1) people 

need basic mathematical skills in order to live independently and thus mathematical 

ability is an important component of having a desirable quality of life, and 2) 

practitioners, teachers, parents, and children with special needs (remedial and 

enrichment) require a larger knowledge base of effective Math programmes and 

interventions.  

Importance of Mathematical Ability 

Basic mathematical ability is essential to everyday life as it carries implications for 

practical, civic, recreational, and professional endeavors (Jolivette et al., 2006; Shalev, 

2004). Math skills are used in the practical tasks necessary for independent living such as 

following a recipe (Patton, Cronin, Bassett, & Koppel, 1997; Shalev, 2004). On a civic 

level, individuals must be able to apply mathematical concepts to interpret information 

such as filing taxes (Jolivette et al., 2006). Math is also used in certain games and 

puzzles, affecting the individual on a recreational level (Jolivette et al., 2006). Failure to 

obtain mastery of basic mathematical skills can also negatively impact the individual’s 
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ability to obtain and maintain employment (Jolivette et al., 2006) as well as to achieve 

employment success (Erford & Klein, 2007).  

Importance of Effective Mathematical Enrichment and Remedial Programmes 

There is a clear, imminent need for evidence of effective Mathematics interventions 

(Burns, VanDerHeyden, & Jiban, 2006). Gifted children need enrichment programmes 

because they are often underserved by the general education Mathematics programme 

(Mills et al., 1994; Silverman, 1989). Unless these children are engaged in a more 

stimulating Mathematics programme, they are at risk for losing motivation, under-

achieving, and being denied appropriate education (Ma, 2005).  

Practitioners, teachers, parents, and children with MDs will benefit from a larger 

database of effective remedial Mathematics programmes. As noted above, mathematical 

ability is essential to independent living and to becoming a contributing member to 

society. Effective treatments will therefore directly improve children’s quality of life and 

will therefore have an indirect positive influence on the quality of life of parents, 

teachers, and practitioners.  

For children with a MD, early intervention is an even more critical issue. 

Achievement in elementary level Mathematics lays the foundation for later, more 

difficult concepts. Elementary school-aged children with LDs commonly do not catch up 

to their peers in high school (Cawley, Kahn, & Tedesco, 1989) and often drop out at the 

high school level (Phelps & Hanley-Maxwell, 1997). Programmes that are open to young 

children and thus allow for early intervention are especially valuable because they 

intervene before the child’s difficulties are exacerbated.  
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It is also important to expand the knowledge base of effective Mathematics 

enrichment and remedial programmes because of the extensive resources invested in 

these intervention programmes. Children and parents invest time, money, and children’s 

futures in mathematical interventions. Such precious resources are best invested in 

scientifically proven programmes.  

The Kumon Mathematics programme can be used for both remediation and 

enrichment and children as young as two years old can enroll (personal communication, 

S. Vishnu, April 9, 2009). By investigating the effectiveness of Kumon, the current study 

has the potential to benefit children with MDs, average-achieving, above average, and 

gifted children, as well as parents, teachers, and practitioners. 

Research Problem and Hypotheses 

The purpose of the study is to investigate the effectiveness of the Kumon 

Mathematics programme for children of varying abilities. Specifically, the research 

questions guiding this study are:  

1. Is there a difference between male and female participants in terms of their pretest 

scores, posttest scores, or the gains they made on the CAT-3? 

2. Is there a difference in the magnitude of gains made in Math skills among children of 

different achievement groups (below average, average, above average, and gifted)? 

3. Is there a difference in the magnitude of gains made on a measure of computation 

skills versus mathematical reasoning skills after six months of participating in the 

Kumon Math programme? 

4. What is the relationship between children’s participation in the Kumon Mathematics 

programme and their achievement in Mathematics?  
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Based on a literature review, this study has several hypotheses as to how these 

research problems will be answered:   

Hypothesis One: Gender Differences in Mathematical Ability 

The null hypothesis is that there is no difference between males and females in terms 

of mathematical ability as measured by the CAT-3. I predict that the null hypothesis will 

be accepted; there will be no significant difference between genders in pretest scores, 

posttest scores, or gains made in Mathematics. 

Hypothesis Two: Children of Varying Mathematical Ability 

Participants will be categorized based on their pretest achievement scores into one of 

four achievement groups: below average, average, above average, or gifted. The null 

hypothesis is that there will be no difference among achievement groups in the gains 

made on the measure of mathematical ability. The directional hypothesis is that gifted 

students will demonstrate the greatest gains, followed by the above average students, 

followed by the average students, who will be followed by the below average students. I 

predict that the results from the current study will support the directional hypothesis. 

Achievement groups will also be compared based on the number of steps the students 

advanced in the Kumon programme. The null hypothesis is that there will be no 

difference in the number of steps completed among the four achievement groups. The 

directional hypothesis is that gifted students will make the most advances, followed by 

above average students, followed by the average students, followed by the below average 

students. I predict that the results from the current study will support the directional 

hypothesis. 

 



11 

 

Hypothesis Three: Kumon Mathematics Programme 

The Kumon Math programme is composed mostly of exercises that target 

computation skills. The null hypothesis is that there will be no difference in the gains 

made by students on a measure of computation skills versus gains made on a measure of 

mathematical reasoning skills. The directional hypothesis is that gains made on the CAT-

3 computation and numerical subtest will be significantly greater than gains made on the 

CAT-3 Mathematics subtest (a measure of mathematical reasoning).  Based on the 

structure of the Kumon worksheets, I predict that the results from the current study will 

support the directional hypothesis. 

Hypothesis Four: The Relationship between Kumon and Achievement in Mathematics 

The null hypothesis is that gains made in Mathematics cannot be predicted based on a 

measure of participation in the Kumon Math programme (number of worksheets 

completed). The directional hypothesis is that gains made on a measure of Mathematics 

can be predicted based on the number of Kumon Math worksheets a child completes. I 

predict that the results from the current study will support the directional hypothesis. 

Since Kumon worksheets focus on computation exercises, I predict that the results from 

the current study will support the directional hypothesis only for gains made in 

computation skills.  

The second null hypothesis is that the relationship between gains made in 

computation skills cannot be predicted based on pretest achievement scores. The 

directional hypothesis is that there is a positive relationship between gains made on the 

computation and numerical estimation and pretest scores on the same subtest. 

Furthermore, a model that examines the predictive ability of the two variables (number of 
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Kumon worksheets completed and the pretest computation scores) together will explain 

more variance in gains made in computation skills than models that examine the 

relationships between the predictor and criterion variables separately. I predict that the 

results from the current study will support the directional hypothesis.  

Summary of Introduction 

Mathematics skills develop at different rates among elementary school-aged children. 

While most children can be categorized into a “typically developing” or “average” group, 

there are children who develop more slowly and others that develop at an accelerated 

rate. The former are sometimes identified as having Mathematics Disorder, or below 

average achievement, and the latter are identified as above average. Children who 

demonstrate exceptional skills are sometimes categorized as gifted. Programmes that help 

build stronger Math skills are desirable for children along all trajectories of development 

in Mathematics, including gifted children. The purpose of the current study is to 

investigate whether the Kumon Math programme is effective as a remedial and/or 

enrichment programme.  

Chapter two is an in-depth review of the current research regarding learning theories, 

typical development of mathematical abilities, mathematical giftedness, Mathematics 

Disorder, and Kumon. Chapter three describes the methods used to test the hypotheses. 

Chapters four and five present the results and the implications of the study, respectively. 

Chapter five will also include conclusions based on the results. 
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CHAPTER II: LITERATURE REVIEW 

Chapter two will discuss the findings and conclusions of the past studies most 

relevant to the current study. The purpose of this section is to interpret the current 

literature on this topic and provide support for how the current study will add to the 

current knowledge base. To achieve this goal, the literature review covers theories of 

learning, the typical acquisition of mathematical abilities, giftedness in Mathematics, 

Mathematics Disorder, Kumon, and a summary of the current state of knowledge.  

Theories of Learning 

Behavioural Psychology 

Behaviourism was the most popular learning theory in the 1950s and 1960s 

(Woodward & Montague, 2002). From this perspective, learning is best characterized in 

terms of observable stimuli and responses, as opposed to unobservable internal factors 

(Gray, 1999; Hetherington, Parke, & Schmuckler, 2005). There are two processes of 

learning: classical conditioning and operant conditioning (Gray, 1999). Classical 

conditioning is defined as, “a type of learning in which individuals learn to respond to 

unfamiliar stimuli in the same way they are accustomed to respond to familiar stimuli if 

the two stimuli are repeatedly presented together” and operant conditioning is defined as, 

“a type of learning in which learning depends on the consequences of behaviour; rewards 

increase the likelihood that a behaviour will recur, whereas punishment decreases that 

likelihood” (Hetherington, 2005, p. 11). Operant conditioning is the most relevant 

process to learning Mathematics, the focus of this literature review. There are many 

principles and constructs used in an operant conditioning framework to explain how 
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people learn including “reinforcement”, “punishment”, “shaping”, and “chaining” (Gray, 

1999). However, the most relevant to the current study is the learning hierarchy. 

Learning Hierarchy   

According to a behavioural-analytic, operant conditioning model, knowledge and 

skills are developed and mastered within a learning hierarchy: acquisition, fluency, 

generalization, and adaptation (Daly & Martens, 1994; Haring, Lovitt, Eaton, & Hansen, 

1978). Proficiency at each stage is necessary for success at later stages. In the acquisition 

phase, the student is acquiring response accuracy (Haring et al., 1978). Acquisition “is 

the first step to skill mastery” (Poncy, Skinner, & Jaspers, 2007, p. 28). In other words, 

acquisition is the foundation upon which fluency, generalization, and adaptation lie, and 

therefore has a significant influence on skill development (Poncy et al., 2007). Suggested 

strategies for improving accuracy include increasing the number of learning trials (Albers 

& Geer, 1991), modeling, demonstrating, and errorless learning (Daly, Witt, Martens, & 

Dool, 1997; Haring et al., 1978). 

Fluency refers to the ability to perform a skill both accurately and quickly (Haring et 

al., 1978). Fluency is a particularly important stage because it frees attentional resources. 

For example, children should become so proficient in solving basic Arithmetic equations 

that responding is so rapid and accurate that it requires little or no conscious monitoring 

(Goldman & Pellegrino, 1987). With automaticity, attentional resources can be allocated 

to other, more difficult tasks (Goldman & Pellegrino, 1987). Fluent responding not only 

requires less effort, but results in higher rates of reinforcement (Codding, Eckert, 

Fanning, Shiyko, & Solomon, 2007). Also, students who can respond automatically may 

have less anxiety and increased motivation to complete tasks (Billington, Skinner, & 
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Cruchon, 2004; Skinner, 2002). And finally, fluency allows more opportunities to 

practice, which further strengthens accuracy and fluency (Skinner, Pappas, & Davis, 

2005). “The primary method for improving fluency is practice” (Skinner, McLaughlin, & 

Logan, 1997, p. 297). Time-based performance exercises and performance feedback are 

other suggested strategies for improving fluency (Daly et al., 1997; Haring et al., 1978). 

In the generalization stage, the student can perform the skill both accurately and 

fluently, but is acquiring the ability to use the skill in a variety of settings (Haring et al., 

1978). Generalization is essential because for a skill to be useful, the individual must be 

able to respond accurately and fluently across time, people, and settings (Stokes & Baer, 

1977). Stokes and Baer summarized the generalization literature and categorized different 

strategies for enhancing generalization. These categories include training multiple 

stimulus and response exemplars, including common stimuli in programming, training in 

multiple contexts, incorporating salient and self-mediated stimuli, and using appropriate 

reinforcement techniques to reward generalization when it occurs (Stokes & Baer, 1977; 

Stokes & Osnes, 1989).  

Last, adaptation refers to the ability to modify or adapt a skill to fit novel situations 

(Haring et al., 1978). A skill is mastered when the student is proficient in performing the 

skills in each stage of learning (Haring et al., 1978). Adaptation is particularly important 

when learning Mathematics because mathematical skills and concepts develop 

hierarchically (Fuchs & Fuchs, 2005). In order to acquire more advanced mathematical 

skills, the individual has to adapt previously mastered skills to novel problems. In fact, 

solving novel problems is the suggested strategy for enhancing adaptation of skills (Daly 

& Martens, 1994).  
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Concepts and methods such as the learning hierarchy are frequently drawn from 

behavioural psychology for the purpose of educating children. Equally influential in the 

field of education, however, is cognitive psychology.  

Cognitive Psychology 

The cognitive perspective on learning began to gain popularity in the late 1960s and 

early 1970s (Woodward & Montague, 2002). This orientation emphasizes the influence 

of cognitive factors in learning and development (Hetherington et al., 2005) and describes 

learning in terms of stored information (Gray, 1999). Emerging from behaviourism, 

cognitivists also attribute learning to the processes of classical and operant conditioning 

(Gray, 1999). The difference between the two schools of thought is that the cognitivists 

also consider the mental activity that occurs between stimulus and response (Gray, 1999). 

The three major subtheories within cognitive developmental psychology (Piagetian 

theory, Vygotsky’s sociocultural theory, and information-processing theory) continue to 

influence educational research and practice (Woodward & Montague, 2002).  

Piagetian theory is defined as, “a theory of cognitive development that sees the child 

as actively seeking new information and incorporating it into his knowledge base through 

the processes of assimilation and accommodation” (Hetherington et al, 2005, p. 15). 

Sociocultural theory is defined as, “a theory of development, proposed by Lev Vygotsky, 

that sees development as evolving out of children’s interactions with more skilled others 

in their social environment” (Hetherington et al, 2005, p. 15). The information-processing 

approach, however, is the most useful for explaining cognitive changes such as the 

development of Mathematics skills because of its many relevant metaphors, models, and 

concepts (Hetherington et al., 2005).  
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Information-Processing 

 The information-processing approach uses the computer as a metaphor for how 

humans learn and think (Bjorklund, 2005; Hetherington et al., 2005). Few followers of 

the information-processing theory believe that the mind functions exactly like a 

computer. Rather, the theory is used for its concepts and language which are widely used 

to describe and understand learning processes (Bjorklund, 2005).  

The information-processing approach comprises four tenets (Siegler, 1998; Siegler, 

2001). First, thinking is information-processing and therefore involves perception, 

encoding, representation, storage, and retrieval of information is thinking. Second, 

encoding, strategy construction, automatization, and generalization are the mechanisms 

that allow a child to learn and develop cognitively. For example, information about a 

Mathematics problem is encoded and then, in combination with prior knowledge, the 

child constructs a strategy to solve the problem. New strategies are slow and effortful but 

become automatic and more effective with practice. Strategies must then be generalized 

to novel problems. Third, the information-processing approach holds that development is 

driven by self-modification. In other words, the child uses previously acquired 

knowledge and strategies to adapt his or her responses to more difficult problems. The 

fourth tenet of information-processing is that both the child’s abilities and the nature of 

the task can influence the child’s performance (Siegler, 1998; Siegler, 2001).  

According to this theory, information moves through a system of cognitive structures 

(Bjorklund, 2005). Information from the environment, perceived through one or more of 

the five senses, enters the sensory register and is stored there temporarily (Hetherington 

et al., 2005). This information, if encoded, is then sent to short-term memory (STM) 
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(Hetherington et al., 2005). STM has a limited capacity so information must be rehearsed 

(to maintain the information) or transferred to long-term memory (LTM) before it 

dissipates (Hetherington et al., 2005). LTM holds knowledge and strategies permanently 

in most cases (Hetherington et al., 2005). When a particular response is required, the 

knowledge and strategies contained in the LTM can be transferred and temporarily held 

in STM, where responses can then be executed (Hetherington et al., 2005). 

The transfer of information between the aforementioned cognitive structures is aided 

by attention, memory, and inhibition in typically developing children. Attention is a 

complex process that is influenced by several variables (Hetherington et al, 2005). One 

such variable is maturation; as the child ages, mental resources and the ability to allocate 

said resources improves (Hetherington et al., 2005). To learn a complex skill such as 

Mathematics, children must also be able to attend to the information at hand but also 

ignore irrelevant information (Hetherington et al., 2005). Miller and Weiss (1981) 

determined that selective attention improves over time. In sum, attention influences the 

processing of information and improves as children develop; therefore, the ability to learn 

improves over time. 

Memory develops and becomes more efficient over time as a result of maturational 

changes in other cognitive processes (Hetherington et al., 2005). First, the STM’s 

information capacity increases and overall information-processing improves when 

children’s processing speed improves. Speed of processing influences all aspects of 

information-processing and, according to Kail (2000), has the most influence on 

developmental changes in cognitive ability. Processing speed typically increases with 

maturation, rather than as a result of practice (Miller & Vernon, 1999). Second, memory 
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strategies, such as rehearsal, information organization, and elaboration, are increasingly 

observed in children as they develop (Hetherington et al., 2005). These strategies also 

make cognitive processing more efficient. And third, knowledge of the world influences 

how children understand information and also how they will recall that information at a 

later time (Hetherington et al., 2005). In other words, as children learn and make more 

mental connections between stored information, cognitive processes become more 

efficient. As these three areas develop, so does the child’s memory. 

Memory can also improve with practice. When a skill is practiced repeatedly, it can 

eventually be performed automatically (Hetherington et al., 2005). Automatic processes 

require none of the STM’s limited capacity, require no mental effort, are unconscious, 

and do not interfere with other processes (Bjorklund, 2005). Storage and retrieval of new, 

more complex information is enhanced when lower-level information can be retrieved 

from LTM automatically. 

Last, inhibition is required to ensure that information flows smoothly from input to 

output in the information-processing model. With age, children become better at ignoring 

irrelevant information in the environment and suppressing inappropriate responses 

(Bjorklund, 2005). When there is less irrelevant and/or inappropriate material in the 

child’s STM there are more resources available for essential cognitive operations which 

makes cognitive processes, such as the transfer of information between STM and LTM 

and learning, more efficient (Bjorklund, 2005).  

In conclusion, the information-processing theory is a useful model for studying and 

explaining children’s learning because it provides many useful terms and constructs. The 

concepts of this theory will be used throughout this literature review to explain the 
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development of mathematic skills as well as to explain the results of the current study in 

the Discussion section (Chapter 5).  

Typical Development of Mathematical Abilities 

Mathematical ability is partly innate (Butterworth, 2005; Shalev, 2004). Infants as 

young as four months old demonstrate the ability to compare, understand,, and respond to 

different quantities of items for groups containing up to four items (Starkey & Cooper, 

1980). This ability has also been observed in monkeys (Nieder, Freedman, & Miller, 

2002), supporting the notion that numeracy is a biologically based, innate ability. Using a 

habituation-dishabituation design, Wynn (1992) demonstrated that 4- to 5-month old 

infants are sensitive to simple addition and subtraction scenarios. Wynn (1992) placed a 

doll on a stage, covered the doll with a screen and then showed a second doll being 

placed behind the screen. When the screen was removed, infants looked longer if there 

were one or three dolls on the stage than if there were two (Wynn, 1992). Children, 

therefore, seem to have an innate ability to understand simple addition and subtraction 

problems.  

The more advanced Mathematics skills are acquired through learning or nurture. 

These mathematical abilities develop hierarchically (Ardila & Rosselli, 2002); each stage 

(enumeration, counting, Arithmetic, and understanding arithmetical concepts) builds 

upon the skills acquired in the previous stage (Ardila & Rosselli, 2002; Butterworth, 

2005; Klein & Starkey, 1987). Enumeration is the ability to sequence and distinguish 

between items in a group of objects (Ardila & Rosselli, 2002; Klein & Starkey, 1987). 

Infants show evidence of enumeration as young as six months old, although their number 
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representations are often imprecise (Wood & Spelke, 2005). Enumeration continues to 

improve as the child develops (Wood & Spelke, 2005).  

Counting is an even more complex type of enumeration, as it requires many subskills 

(Butterworth, 2005). Children must first learn the counting words; a skill that begins to 

emerge at about the age of two (Butterworth, 2005). Also in their second year, children 

acquire the one-to-one principle and the stable order principle (Ardila & Rosselli, 2002). 

The one-to-one principle is the understanding that each number word is linked with one 

and only one object (Gelman & Gallistel, 1978). The stable order principle embodies the 

concept that each number name is assigned to a permanent position in the list of numbers 

and that the sequence of numbers in that list never changes (Ardila & Rosselli, 2002; 

Gelman & Gallistel, 1978). At around age three, children will demonstrate the third 

principle required to be able to count: the cardinal principle (Butterworth, 2005; Gelman 

& Meck, 1983). The cardinal principle is the understanding that a collection of items 

contains the number of objects corresponding to the last counting word used (Ardila & 

Rosselli, 2002; Gelman & Gallistel, 1978). Children continue to refine these counting 

skills until about the age of six (Butterworth, 2005).  

“Counting is the basis of Arithmetic for most children” (Butterworth, 2005, p. 8). 

Addition, therefore, is commonly taught by building on the child’s counting skills. There 

are three addition strategies that make use of counting skills: counting all, counting on 

from first, and counting on from larger (Butterworth, 1999; Carpenter & Moser, 1982). 

Counting all develops first (Butterworth, 1999; Carpenter & Moser, 1982). Children in 

this stage represent both numbers in the addition problem using physical objects (their 

fingers, for example) and will then count all the objects (Butterworth, 1999; Carpenter & 
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Moser, 1982). In the next stage, counting on from first, children will no longer count the 

first addend and will instead start with that number and then use an external aid (such as 

their fingers) to add on the second number (Butterworth, 1999; Carpenter & Moser, 

1982). The last stage (counting on from larger) is the most efficient (Butterworth, 1999; 

Carpenter & Moser, 1982). The child selects from the equation the largest number and 

then uses an external aid (such as fingers) to count on the smaller addend (Butterworth, 

1999; Carpenter & Moser, 1982). Subtraction develops similarly. The acquisition of 

addition and subtraction continues into the second grade. 

The next stage of development is fluency with Arithmetic facts. At this stage, 

children no longer need to mentally add or subtract the numbers in an equation. Instead, 

the solution is quickly and accurately retrieved from memory (Butterworth, 2005). 

Siegler and Shrager (1984) suggest that over time, children learn to associate specific 

answers with specific equations.  

At around the age of eight or nine children begin to learn multiplication and division 

(Ardila & Rosselli, 2002). These new skills are also built upon previously mastered 

skills; multiplication and division are frequently explained in terms of repeated addition 

and subtraction (Butterworth, 2005).  

Mathematical reasoning is a distinct domain of mathematical ability (Fuchs et al., 

2008). It is defined as axiomatic reasoning, logical deduction, formal inference, and 

problem-solving (Arthur Steen, 1999). Relatively little is known about how mathematical 

reasoning develops (Arthur Steen, 1999). There is evidence, however, that suggests that 

logical and mathematical thinking can develop naturally through social interaction, 

games, commercial transactions, and discussions with others (Schliemann & Carraher, 
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2002). This is not to say that mathematical reasoning cannot be further developed via 

formal instruction. Rather, Arthur Steen (1999) suggests that active classroom tasks, such 

as discussion, projects, and teamwork, will be more effective than passive strategies, such 

as memorization, drill, and templates, in helping children develop mathematical 

reasoning.  

In both research and practice, mathematical reasoning is often secondary to 

computation. Mathematics teachers often focus on teaching students how to do 

Mathematics with little focus on ensuring that their students understand how to reason 

mathematically (National Center for Educational Excellence, 1996). It is not surprising 

then, that Zhou, Peverly, and Lin (2005) found that first grade Chinese and American 

children’s numerical operation skills were better developed than their mathematical 

reasoning skills. The imbalance in knowledge and emphasis between computation and 

mathematical reasoning is not due to differences in their importance. Mathematical 

reasoning is necessary for solving word problems, finding patterns, and verbalizing 

logical explanations (Zhou et al., 2005). Further research is needed on the typical and 

atypical development of mathematical reasoning ability.    

Gender Differences in Mathematical Ability 

There is a widespread mainstream belief that males have a greater aptitude for 

Mathematics than females. This belief can be traced as far back as 1894 when Havelock 

Ellis wrote about male’s cognitive superiority in a variety of domains, including 

Mathematics. Since then, gender differences in mathematical ability have been the focus 

of many research studies and the source of great debate.  
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Many early studies reported significant gender differences in mathematical ability, 

with the results favouring males. Research in this area continues to this day and the 

results are often conflicting. Some researchers report no gender difference; others find 

gender differences, sometimes in favour of males, other times the gender difference 

favours females. For example, Demie (2001), Gorard, Rees, and Salisbury (2001), and 

Penner (2003) have found gender differences in mathematical ability. The later researcher 

found that gender differences favoured males in all areas measured. The conclusion of the 

two other studies was that females outperformed males in basic arithmetic. In contrast, 

Ding, Song, and Richardson (2007), Georgiou, Stavrinides, and Kalavana (2007), and 

Leahey and Guo (2001) have found that there are no significant gender differences in 

mathematical ability among elementary school aged children. The reason for paradoxical 

results can likely be attributed to different research designs (Aunio, Aubrey, Godfrey, 

Pan, & Liu, 2008). Researchers may have come to different conclusions because of 

sample differences (for example, cultural differences and/or age range), and/or type of 

Math skill investigated. 

Meta-analysis has revealed that the magnitude of gender differences varies with age. 

Gender differences seem to become pronounced near the end of high school (Georgiou et 

al., 2007; Hyde, Fennema, & Lamon, 1990; Leahey & Guo, 2001). Differences between 

the sexes increase slightly in college and adulthood (“effect sizes = .29, .41, and .59 for 

high school, college, and adult samples, respectively” (Bjorklund, 2005, p. 418)).  

Gender differences may also vary depending on the specific Mathematics skill 

evaluated. Some research shows that females perform better on computation tasks, males 

do better on problem-solving tasks, and there is no gender difference in comprehension of 
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mathematical concepts or basic mathematical knowledge (Anastasi, 1958; Demie, 2001; 

Gorard et al., 2001; Hyde et al., 1990; Stage, Kreinberg, Eccles, & Becker, 1985). 

Females demonstrate superiority in computation as early as in the elementary years while 

gender differences favouring males in problem solving do not emerge until the high 

school and college years (Hyde et al., 1990). Research in this area may have advanced 

and led to new conclusions in recent years. Unfortunately, recent research could not be 

located in a PsycInfo search. 

Although gender differences are relatively small among the majority of elementary 

school aged children, it is still important to determine the origin of slight differences. 

Some researchers attribute gender differences to gender socialization. There is some 

evidence to support this hypothesis. Teachers, parents, and peers often have negative 

feelings about females acquiring advanced Math skills (Fox, 1976), which results in less 

encouragement for females to pursue advanced Mathematics. Some research has also 

shown that there are gender differences in interest in Mathematics. One possible cause for 

this disinterest is popular media; the message in popular media often discourages females 

from taking interest in Mathematics (Bjorklund, 2005). Last, some researchers have 

demonstrated that females tend to have lower self-confidence in Mathematics and higher 

Math anxiety than males (Felson & Trudeau, 1991). In sum, the gender socialization 

hypothesis is that females are conditioned by society to believe that they have a lower 

aptitude for Mathematics, that society expects males to demonstrate better performance in 

Mathematics than females, and that females will not need advanced Mathematics skills 

(Felson & Trudeau, 1991; Persson Benbow & Stanley, 1983).  
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Some researcher’s results have challenged the socialization hypothesis. Felson and 

Trudeau (1991) found no gender differences in parental encouragement in Mathematics 

and they found that although females have greater anxiety about Mathematics, they have 

greater general test anxiety, rather than a specific fear of Mathematics (Felson & 

Trudeau, 1991).  

An alternate explanation for gender differences in Mathematics is biologically-based. 

Some researchers have proposed that gender differences in brain lateralization are the 

cause of gender differences in mathematical ability (Halpern, 1986). In addition, several 

reports have shown that males demonstrate different brain activation patterns than 

females when solving Mathematics problems, suggesting hard wired differences between 

the sexes (Hyde, 2007). This hypothesis has also been challenged. It could be that “males 

and females have different experiences related to Mathematics as they grow up, and that 

these different experiences have, on average, enhanced synaptic connections in some 

regions for males and in other regions for females” (Hyde, 2007, p. 262). Further 

evidence against a biologically-based hypothesis comes from meta-analyses. Analysis 

shows that the magnitude of the gender differences in mathematical ability has declined 

in the past several decades (Bjorklund, 2005). It is highly unlikely that drastic 

evolutionary changes in neuroanatomy could have occurred over such a short time span.  

There is another alternative explanation for the gender differences in mathematical 

ability. It may be that differences in background knowledge and cognitive strategies lead 

to differences in mathematical ability (Bjorklund, 2005). Byrnes and Takahira (1993) 

found that males scored higher on tests of mathematical strategies, background 

knowledge, and aptitude [Scholastic Aptitude Test (SAT)]. Knowledge of strategies and 
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background knowledge accounted for 50% of the variance in the SAT scores and when 

these two factors were controlled for statistically, gender differences in SAT scores were 

no longer significant (Byrnes & Takahira, 1993). Questions still remain, however, such as 

why there are differences in background knowledge and strategies in the first place, since 

grade-point average and number of Mathematics courses completed were comparable for 

males and females in Byrnes and Takahira’s (1993) study. The researchers proposed that 

the source of gender differences in Mathematics is likely multifactorial, “including 

socialization, physiological, and cognitive factors” (Bjorklund, 2005, p. 420).  

The magnitude of the gender difference in mathematical achievement is greatest 

among individuals who score in the top fifth percentile, with the gender difference 

favouring males (Bjorklund, 2005; Preckel et al., 2008). This differential representation 

of males at the upper extreme is likely due to the fact that males demonstrate significantly 

more variance in test scores than females (Feingold, 1992; Hedges & Nowell, 1995). 

“Sex differences in variance and mean lead to substantially fewer females than males 

who score in the upper tails of the Mathematics and Science ability distributions….” 

(Hedges & Nowell, 1995, p. 45). As a result, males may be more likely to enter and excel 

in mathematically-based occupations (Hedges & Nowell, 1995).  

In conclusion, for most of the population, the difference between males and females 

in mathematical ability is small. The gap widens slightly with age, across different types 

of Mathematics skills, and at the upper extreme of ability levels. In other words, “a 

general statement about gender differences is misleading because it masks the complexity 

of the pattern” (Hyde et al., 1990, p. 151). It is important to understand the pattern, 

sources, and implications of gender differences in mathematical ability because 
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misinformation and stereotypes can negatively influence people’s self-image, self-

esteem, achievement, occupational status, and earnings (Hedges & Nowell, 1995).  

Giftedness in Mathematics 

Giftedness is often defined as extraordinary cognitive ability paired with 

extraordinary specific knowledge and achievement in a particular domain (Lohman, 

2005; Threlfall & Hargreaves, 2008). Still, the criterion for identifying giftedness often 

only consists of a score above a certain cutoff on a measure of intellectual ability. Many 

school districts and researchers have selected an IQ of 130 as a cutoff score on a measure 

such as the Wechsler Intelligence Scale for Children–Fourth Edition (WISC-IV) in order 

to be formally identified as gifted (Mills et al., 1994; Montague & van Garderen, 2003; 

Tsui & Mazzocco, 2007; van Garderen & Montague, 2003). Other researchers use 

domain specific achievement scores to group children as “gifted” (Ma, 2005; Mills, 

Ablard, & Gustin, 1994; Niederer, Irwin, Irwin, & Reilly, 2003; Swanson, 2006; Threlfall 

& Hargreaves, 2008). This method allows researchers to group children who may be 

gifted. Without a measure of cognitive ability, children cannot be formally classified as 

gifted. As such, researchers who use achievement scores to group children into ability 

categories typically label the highest scoring group as “precocious” or “talented” to 

highlight the fact that these children are not formally identified as gifted. 

Gender Differences 

Among the mathematically gifted, there are more males than females (Preckel et al., 

2008). Benbow and Stanley (1983) compared the number of males and females who 

scored above 700 on the SAT-Mathematics and found a male-to-female ratio of 13:1. 

Gender differences in mathematical ability within the general population have been 
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decreasing since the 1960s and the disparity continues to get smaller except among the 

gifted, where males continue to be disproportionately represented (Bjorklund, 2005). 

Qualitative versus Quantitative Differences 

Same-age comparative studies have shown that gifted learners differ from their peers 

in several ways (Shore & Kanevsky, 1993; Steiner & Carr, 2003). Threlfall and 

Hargreaves (2008) stated that gifted learners: 

• have a broader and more inter-connected knowledge base 
• are quicker at solving problems, while spending more time planning 
• are more efficient at representing and categorizing problems 
• have more elaborate procedural knowledge 
• are more flexible in their use of strategies 
• prefer complex, challenging problems [and] 
• are more sophisticated in their meta-cognition, including self-regulation. (p. 84) 

 
Reichel (1997) noted several signs of mathematical giftedness, specifically. When 

students create new words, symbols, and sketches, look for problems, have imagination, 

reduce complexity, formalize and generalize ideas, are amazed by facts and formulae, 

and want to discuss Mathematics, they are demonstrating signs of mathematical 

giftedness (Reichel, 1997).  

 There has been debate and conflicting evidence as to whether these differences and 

the superior ability/achievement of gifted children are due to qualitative (life-long, 

fundamental differences in thinking processes and strategies) or quantitative differences 

(precocity) between them and typically developing children (Shore & Kanevsky, 1993; 

Winner, 2000a). Many researchers purport that mathematically gifted children are 

qualitatively different from average-ability children because the gifted “take more time to 

orient to a problem, to utilize a wider range of problem-solving strategies, and to evaluate 

their progress both during and after completing a problem” (Niederer et al., 2003, p. 72). 
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However, it is unclear whether these differences remain over time and therefore whether 

they are truly qualitative differences. The majority of evidence supporting the theory that 

gifted children develop and process information in a qualitatively different way from 

typical children is anecdotal (Winner, 2000a). Systematic research is needed to determine 

whether extraordinary mathematical ability is always accompanied by qualitative 

cognitive differences throughout gifted individuals’ lives (Winner, 2000b). 

In contrast, Threlfall and Hargreaves (2008) propose that the difference between 

gifted and non-gifted children is quantitative. Threlfall and Hargreaves (2008) compared 

how nine-year old gifted students and 13-year old average-achieving students solve 

Mathematics problems. The results of this study suggest that in at least some respects, 

young, gifted children solve mathematical problems with a similar approach to that of 

older children of average ability (Threlfall & Hargreaves, 2008). This research supports 

the position that the difference between gifted and average ability children is a matter of 

precocity (a quantitative difference) (Threlfall & Hargreaves, 2008).  

There are other researchers, still, who say that gifted children are both quantitatively 

and qualitatively different from average-achieving children (Winner, 2000a). There is 

clearly a strong need for further systematic research to solve this debate. 

Nature versus Nurture 

It is a dominant cultural belief that giftedness is a product of the individual’s genetic 

makeup and that it is innate (Winner, 2000b). Although there is some evidence to that 

support this position, research has not supported the nature perspective unequivocally 

(Threlfall & Hargreaves, 2008). 
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A contrasting view, the “expert performance” approach, proposes that there is a clear 

link between giftedness and deliberate practice (Ericsson, Roring, & Nandagopal, 2007). 

There is scientific evidence supporting this position. Researchers have shown that 

extraordinary achievement in a variety of domains (Science, Arts, Mathematics, athletics, 

piano, violin, chess, etc.) is predicted by the amount of time the individual spends 

practicing (Ericsson, Krampe, & Tesch-Romer, 1993). Despite this and other evidence of 

the importance of nurturing giftedness, no evidence “rules out the contribution of genetic 

factors as a source of individual differences in who will be able to develop a given 

amount of expertise” (Sternberg, 2001, p. 161). In other words, it is most likely that both 

nature and nurture contribute to giftedness.  

Educating the Mathematically Gifted 

Giftedness is often overlooked as an area in need of research and interventions as 

giftedness is often viewed as something to be admired or envied, rather than something 

that needs to be addressed with an intervention (Winner, 2000b). Also, advocates of the 

nature perspective believe that giftedness is an innate attribute that cannot be developed 

through training and intervention (Winner, 2000b). In reality, much is to be gained by 

providing gifted children with interventions and/or enrichment programmes that are 

tailored to their needs.  

If the special education needs of gifted children are not met, these children are likely 

to be underserved (Mills et al., 1994; Silverman, 1989). An “under-stimulating 

Mathematics curriculum results in the loss of motivation, under-achievement, and the 

denial of the value of education among mathematically talented students” (Ma, 2005, p. 

105). Gifted children need an appropriate level of challenge to ensure their happiness, 
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mental health, and social integration (Winner, 2000b). Also, gifted children will become 

our future leaders and innovators; it is in all of our best interest to provide them with an 

education that will maximize their potential (Winner, 2000b). The best way to ensure that 

gifted students’ special needs are met and that they will reach their full potential is to 

provide them with individualized education (Lubinski & Persson Benbow, 2006; Mills et 

al., 1994).  

Research suggests that “the most effective method to provide [gifted] students with 

the necessary challenge and appropriate pace of learning is acceleration” (Mills et al., 

1994, p. 496). This is a process of advancing the student by providing him or her with 

material that is at an appropriately challenging level (Feldhusen, 1989). Hundreds of 

studies have shown that this is an effective method for enhancing the achievement of 

gifted students (Lubinski & Persson Benbow, 2006). What’s more, the positive effects of 

acceleration are long term. Participants in a fast-paced, intellectually rigorous 

Mathematics programme were two times more likely to have Mathematics- or Science-

based careers than non-participants 10 to 20 years after completion of the programme 

(Swiatek & Benbow, 1991). In sum, an effective gifted programme will include 

acceleration. 

Research also supports the use of flexible pacing for the mathematically gifted 

(Stanley, 1991; Winner, 2000a). Mills and colleagues (1994) evaluated the effect of a 

Mathematics programme that incorporated flexible pacing. More specifically, the 

programme integrated four strategies: (a) the curriculum was linear (students did not 

advance until they demonstrated mastery), (b) the curriculum was flexibly paced (the 

pace was determined by each individual’s unique rate of achievement), (c) no age or 
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grade restrictions were placed on students, and (d) instructional placement was 

determined by the student’s achievement level at the time of entry in the programme 

(Mills et al., 1994). Third, fourth, fifth, and sixth grade mathematically gifted students 

demonstrated greater achievement gains over a 7- month period than controls (Mills et 

al., 1994). These gains were maintained after a period of five months (Mills et al., 1994).  

Another major benefit of Mills and colleagues’ (1994) Mathematics programme was 

that it provided a venue for like-minded children to meet and interact. Although gifted 

children tend to be more introverted and enjoy solitude more than average-achieving 

children, they still desire peer contact and friendships (Winner, 2000b). Gifted children 

especially desire interaction with like-minded peers (Winner, 2000b). Enrichment 

programmes that bring gifted students together address this need. 

In practice, the most common intervention for gifted children is placement in an 

enrichment or advanced class within the child’s school. These classes combine effective 

strategies for educating the gifted such as advanced placement and ability grouping 

(Winner, 2000b). Advanced classes are common at the secondary level but rare at the 

elementary level (Winner, 2000b). This is unfortunate because enrichment classes are 

needed at all school levels as giftedness occurs at all ages. 

Enrichment classes are most often headed by a special education teacher. This is an 

important component of the programme as gifted students still need support despite their 

advanced knowledge. “Enrichment that consists of ‘busy work’ or irrelevant topics has 

limited academic value for gifted students” (Diezmann & English, 2001, p. 13). The 

teacher is required to design an enrichment programme that is appropriately challenging. 

The quality of this programme, therefore, will depend on the teacher’s training, 
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theoretical orientation, skill, personality, etc. There is much variability in these teacher 

variables and thus there is much variability in the quality of enrichment programmes. 

Despite this disadvantage, informal enrichment programmes are commonly used 

interventions for gifted students. 

Formal programmes are employed much less frequently as interventions for gifted 

students although are many advantages to using formal programmes. Formal programmes 

provide the consistency that is lacking in informal programmes as instruction and 

evaluation are standardized. Also, programmes are periodically reviewed and revised by 

multiple professionals which often leads to a superior product. Third, formal programmes 

are more likely to be designed based on theory and research. The disadvantages of formal 

programmes are that they often cost money and that they can be too rigid and not 

individualized to the unique client’s needs. A formal programme that also allows for 

individualization may be the optimal intervention for gifted children. Unfortunately, there 

is currently no research on programmes of this nature to the best of the author’s 

knowledge. 

Giftedness is defined as extraordinary performance or ability in one or more domains. 

Further research is needed to resolve the debate regarding whether the differences 

between gifted and non-gifted children are quantitative, qualitative, or both. Similarly, 

there is a nature-nurture debate as to the origins of giftedness; likely, both nature and 

nurture contribute. Last, research on interventions for gifted children has largely been 

ignored. The effectiveness of formal programmes as interventions for gifted students is in 

particular need of research. 
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Mathematics Disorder 

In comparison to other disorders, including Reading Disorder (RD), Mathematics 

Disorder (MD) is far less researched and understood (Geary, 1993; Mazzocco & Myers, 

2003). The knowledge gap is so vast that a universally accepted definition for MD does 

not exist (Mazzocco & Myers, 2003). One proposed definition is an “unexpected 

difficulty in the Arithmetic module, conceptual knowledge base, or problem-solving 

space of the domain-specific functional Math system, given the student’s verbal, 

quantitative, and/or visual-spatial reasoning ability” (Busse, Berninger, Rury Smith, & 

Hildebrand, 2001, p. 151). Adding to the confusion, a variety of labels has been used to 

describe the same disorder throughout the scientific literature (Geary & Hoard, 2001). 

Terms such as Developmental Dyscalculia (Mazzocco & Myers, 2003; Shalev, 2004; 

Shalev & Gross-Tsur, 1993), Mathematical Disability (Geary, 1993), Arithmetic 

Learning Disability (Geary & Hoard, 2001; Koontz & Berch, 1996), Arithmetical 

Disability (Geary, 2003), and Number Fact Disorder (Temple & Sherwood, 2002) have 

all been used to refer to the same disorder. The author of the current article will use the 

term Mathematics Disorder (MD), as MD is the terminology used by the DSM-IV-TR. 

Diagnosis of Mathematics Disorder 

The diagnostic criteria for MD according to the DSM-IV-TR (2000) are:  

(a) mathematical ability, as measured by individually administered standardized tests, 
is substantially below that expected given the person’s chronological age, measured 
intelligence, and age-appropriate education; (b) the disturbance in Criterion A 
significantly interferes with academic achievement or activities of daily living that 
require mathematical ability; and (c) if a sensory deficit is present, the difficulties in 
mathematical ability are in excess of those usually associated with it. (p. 54) 

 
MD occurs in spite of emotional, environmental, cultural, social, or motivational 

factors (APA, DSM-IV-TR, 2000; Learning Disability Association of Ontario, [LDAO], 
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2009). The DSM-IV-TR’s diagnostic criteria are based on a discrepancy model. The 

DSM-IV-TR specifies that the discrepancy between cognitive ability and academic 

achievement must be significant, but it does not specify the level of significance.  

Often, a difference of two or more standard deviations (SD) between cognitive ability 

and academic achievement scores is defined as a significant discrepancy (Shalev, 2004). 

Other researchers and practitioners use a variation of the discrepancy-based model. For 

example, some researchers’ criteria for inclusion in an LD group are a low-average to 

high IQ score combined with a ranking below the 25th percentile on a measure of 

mathematical achievement (Geary, 2003). However, the cutoff rank on the academic 

measure varies widely (from the 8th to 48th percentile) among researchers (Swanson & 

Jerman, 2006). 

There is a third variation of the discrepancy-based model. Within this model, if there 

is a discrepancy of at least 2 years between the child’s actual grade and his or her grade 

level of achievement on a measure of Mathematics, that child meets criteria for a 

diagnosis of MD (Hammill, 1990).  

Although the discrepancy-based model is used frequently in the diagnosis of MD, 

there is evidence that this model is inappropriate and ineffective (Mazzocco & Myers, 

2003). First, the discrepancy-based model sometimes leads to false negatives (Mazzocco 

& Myers, 2003) and/or false positives (Geary, 1990; Geary, Brown, & Samaranayake, 

1991). For example, children who score in the gifted range on a measure of cognitive 

ability and in the average range on a Mathematical achievement measure would be 

diagnosed with an MD. Although these children are underachieving, a diagnosis of MD 

may not be appropriate. Second, the commonly used cutoff percentile ranks (between the 
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10th and 25th) on Mathematics achievement tests does not reflect the reported prevalence 

rates of MD (between 5 and 8%) (Geary, 2003).  

An alternate diagnostic model is the criterion-based model. According to this model, 

cognitive ability does not need to be considered in the identification of a Learning 

Disability (LD). For example, some researchers have classified children as having a MD 

if they rank below the 45th percentile on a measure of mathematical achievement 

regardless of their intellectual ability (Mazzocco & Myers, 2003). Although this model 

may be the most efficient for use in research, it will lead to many false positives as it fails 

to differentiate between children with LDs and children with Mental Retardation (MR).  

Change over time is also used as a method of diagnosing a LD (Geary, Hoard, & 

Hamson, 1999). MD, for example, is indicated when students perform poorly in 

Mathematics in two or more consecutive grade levels (Geary et al., 1999). This criterion 

would likely lead to many false positives and may, therefore, be better used as an adjunct 

to either a discrepancy- or criterion-based model. The DSM-IV-TR uses these criteria to 

diagnose a MD. Not only does the DSM-IV-TR require that the individual demonstrates a 

significant discrepancy between cognitive ability and mathematical achievement, but also 

that the mathematical difficulties incurred by the individual causes significant 

impairments in academic achievement (at school). 

Variations in diagnostic models and criteria limit practitioners’ and researchers’ 

abilities not only to accurately diagnose the disorder, but also to determine the core 

deficits, existence of subtypes, prevalence, prognosis, etiology, characteristics, and 

effective treatments for MD. Universally accepted diagnostic criteria are an essential 

future endeavor.  
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Subtypes 

Children with MD are heterogeneous in their mathematical achievement (Geary, 

1993; Kronenberger & Dunn, 2003; Mazzocco & Myers, 2003). Based on cognitive 

theory, research on acquired dyscalculia, and behaviour genetic studies of mathematical 

ability, Geary (1993) divided MD into three subtypes: Semantic Memory, Procedural, 

and Visuo-spatial. The Semantic Memory subtype is characterized by difficulty retrieving 

mathematical facts, frequent errors in fact retrieval, and variable response times for 

correct retrieval (Geary, 2003; Mazzocco & Myers, 2003). Studies have shown that 

inefficient inhibition of irrelevant associations [for example, answering 7 or 3 to the 

problem 6 + 2 (the numbers that follow 6 and 2)] disrupts individual’s ability to retrieve 

Mathematics facts from long-term memory (Geary, Hamson, & Hoard, 2000). Retrieval 

errors occur because irrelevant information cannot be inhibited from entering working 

memory which reduces STM capacity which in turn reduces the amount of mental 

resources that can be allocated to making correct associations (Geary, 2003). The 

existence of the Semantic Memory subtype “has received the most consistent support 

across studies of MD” (Mazzocco & Myers, 2003, p. 223).  

The Procedural subtype is characterized by developmentally immature procedures, 

frequent errors in procedures, poor comprehension of the concepts underlying 

procedures, and difficulty sequencing steps in complex procedures (Geary, 2003). STM 

deficits and poor conceptual knowledge of procedures contribute to procedural deficits in 

children with MD (Geary, 2003; McLean & Hitch, 1999; Swanson, 1993).  

Third, the Visuo-spatial subtype is characterized by difficulties in spatially 

representing mathematical information and relationships as well as poor comprehension 



39 

 

of spatially represented information (Geary, 2003). Geary, Hoard, Byrd-Craven, and 

DeSoto (2004) suggest that these deficits are due to poor monitoring of the sequence of 

steps in a mathematical problem and poor detecting and correcting of errors, rather than 

deficits in spatial abilities. 

There is preliminary scientific evidence that MD subtypes exist. For example, there is 

some evidence that heterogeneity in mathematical deficits reflect abnormalities in related 

neural structures (Swanson & Jerman, 2006). Other researchers have challenged the 

existence of MD subtypes. Further research is needed to resolve this debate because there 

may be multiple underlying deficits among individuals with MDs which would have 

significant implications for treatment (Mazzocco & Myers, 2003).  

Prevalence 

Prevalence estimates of MD vary widely in the literature due to variations in the 

definition and diagnostic criteria for MD (Butterworth, 2005; Mazzocco & Myers, 2003). 

Estimates range from as low as 1% of school-age children (APA, DSM-IV-TR, 2000) to 

as high as 8% (Ostad, 1998). Variations in prevalence rates may also be due to the fact 

that there has been no large-scale epidemiological study of the prevalence of MD (Geary, 

2003). The majority of currently existing, well designed studies report prevalence rates 

between 5 and 8% (Geary, 2003, Gross-Tsur et al., 1996; Lewis et al., 1994; Shalev et al., 

2000). Prevalence ratios are equal between girls and boys (Lewis et al., 1994; Gross-Tsur 

et al., 1996; Shalev, 2004). 

MD typically occurs as a specific learning disability (Shalev, 2004), however, 

attention-deficit/hyperactivity disorder (ADHD) and RD sometimes occur comorbidly 

(Geary, 2003). Gross-Tsur and colleagues (1996) found that 26% of children with MD 
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had comorbid ADHD and 17% had comorbid RD. Just as prevalence rates vary 

throughout the literature, so do comorbidity rates. Ostad (1996), for example, found that 

half of the children identified as having a MD had a comorbid Written Expression 

Disorder and Badian (1983) found that almost half of children with a MD had a comorbid 

RD. Children with comorbid disorders are more profoundly impaired in Arithmetic than 

children with MD alone (Jordan, Hanich, & Kaplan, 2003; Shalev, Manor, & Gross-Tsur, 

1997). Children with MD alone also outperform co-morbid children (RD and MD) on 

measures of literacy, visual-spatial problem solving, LTM, STM for words, and verbal 

working memory (Swanson & Jerman, 2006).  

Prognosis 

The symptoms of MD may be expressed as early as Kindergarten and is usually 

diagnosed before children enter the fifth grade (APA, DSM-IV-TR, 2000). Typically, 

referral occurs during the second or third grades when formal instruction is introduced as 

difficulties in Mathematics become more apparent at this level. 

Children’s academic strengths and weaknesses change over time and therefore not 

every delay in Mathematics is an indication of a MD (Francis, Shaywitz, Stuebing, 

Shaywitz, & Fletcher, 1994; Shalev, 2004). In other words, not all children display stable, 

lifelong difficulty with Mathematics (Mazzocco & Myers, 2003). Mazzocco and Myers 

(2003) found that only 65% of children identified as having a MD in Kindergarten were 

classified as having persistent MD in grades one, two, and/or three and 63% of children 

who had been classified as MD in any grade (Kindergarten to grade three) were identified 

as having a MD for 2 or more years. Shalev and colleagues (1998) found that of 123 

grade 4 students classified as having a MD, 47% were classified as having persistent MD 
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three years later, yet all participants performed poorly in Mathematics (ranked in the 

lowest quartile). Also, Mazzocco and Myers (2003) found that RD occurred more 

frequently in children with persistent MD than children with non-persistent MD (25% 

and 7% incidence rates, respectively). Similarly, severity of the MD at the time of initial 

assessment and the presence of significant problems in Mathematics in siblings were 

associated with persistent MD in Shalev and colleagues’ (1998) study (socioeconomic 

status, gender, presence of another LD, and educational interventions were not). 

In sum, ability in Mathematics seems to fluctuate significantly between Kindergarten 

and grade 3 and to be more stable in grades four and up. Of all children diagnosed with a 

MD, approximately half of these individuals continue to meet criteria for a diagnosis 

throughout their lives although the expression of the disorder likely changes with age.   

Etiology 

The etiology of MD is multifactorial, including genetic, environmental, neurological, 

and psychological factors (Kronenberger & Dunn, 2003; Shalev, 2004). Heredity was 

proposed as a cause of MD as early as 1974 (Kosc, 1974). Alarcon and colleagues’ 

(1997) study indicated that MD is in fact significantly heritable. This twin study 

demonstrated that 58% of monozygotic co-twins and 39% of dizygotic co-twins had a 

MD (Alarcon et al., 1997). In other words, MD was 8-12 times more prevalent in twin 

pairs than in the general population (Alarcon et al., 1997; Shalev, 2004). In a family 

study, Shalev and colleagues (2001) found that about half of all siblings with a MD have 

a MD themselves; siblings were 5 to 10 times more likely be to diagnosed with MD than 

members of the general population (Shalev et al., 2001). Genetics studies strongly 

suggest that MD is partly hereditary.  
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“Functional neuroimaging reveals that the parietal lobes, especially the intraparietal 

sulci, are active in numerical processing and Arithmetic” in typically developing 

individuals (Butterworth, 2005, p. 14; Dehaene et al., 2003). Functional neuroimaging 

suggests that different brain areas are activated when individuals with a MD are 

presented with mathematical tasks (Shalev, 2004). For example, when shown an 

Arithmetic exercise, the brain areas activated in young adults with a MD were the right 

intraparietal sulcus and left middle frontal gyrus, compared to controls who showed 

activation in the right and left intraparietal sulcus (Morocz et al., 2003). Research has 

also shown anatomical differences in brain structures between individuals with a MD and 

controls. Molko and colleagues (2003) found anatomical disorganization within the right 

intraparietal sulcus among individuals with Turner Syndrome who demonstrated 

difficulty with numeracy. Issacs and colleagues (2001) compared two groups of 

adolescents; one group had average abilities in Mathematics and the other displayed 

deficits in numerical operations. The group with arithmetical deficits had comparatively 

less grey matter in the left intraparietal sulcus (Isaacs et al., 2001). In sum, research 

suggests that individuals with a MD activate different brain regions and have anatomical 

differences in brain structure compared to typically developing individuals (Shalev, 

2004).  

Environmental and psychological factors can exacerbate difficulties in Mathematics 

but they cannot cause MD. Environmental influences include speed of teaching (Cuming 

& Elkins, 1999), class size, and Mathematics curricula (Miller & Mercer, 1997) and 

psychological influences include Mathematics anxiety (Shalev, 2004). These factors 
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should be considered in the diagnosis and treatment of MD as they influence the 

expression and persistence of MD. 

In conclusion, genetic and neurological factors can lead to the development of a MD 

while environmental and psychological factors can further exacerbate the disorder. It is 

most likely that MD develops as a result of a combination of the aforementioned 

variables, as opposed to any one factor in isolation. It is not surprising, then, that the 

expression of MD is so diverse.  

Qualitative versus Quantitative Differences 

The majority of children (typically developing and otherwise) experience difficulty 

with Mathematics at some point in their life. The difference between the difficulties 

expressed by typically developing children and children with a MD can be described as 

quantitative or qualitative. Behaviourists theorize that any difficulties that arise in 

acquiring a skill, including Mathematics, occur at specific stages of the learning 

hierarchy. The difference between individuals with MDs and typically developing 

individuals is quantitative; individuals with MDs experience more difficulties at all stages 

in comparison with typically developing individuals. Cognitivists, contrastingly, theorize 

that the difficulties expressed by individuals with a MD are qualitatively different from 

those expressed by typically developing individuals because people with a MD have 

qualitatively different psychological processing abilities. 

Learning Hierarchy 

Children with a MD express difficulty at all four stages of the learning hierarchy: 

acquisition, fluency, generalization, and adaptation (Daly & Martens, 1994; Haring et al., 

1978). Shalev (2004) defines MD as “a specific learning disability affecting the normal 
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acquisition of Arithmetic skills” (p. 765); children with LDs often struggle with the 

acquisition of new skills. For children with developmental disabilities, fluency in math 

skills is particularly difficult (Jolivette et al., 2006). Even if math skills do become 

accurate and fluent, children with a MD often have difficulty generalizing those skills 

(Scott, 1993). Although evidence of difficulty in the adaptation stage did not surface in a 

recent PsycInfo search, it is reasonable to assume that this stage, too, would be 

challenging for a child with a MD.  

Information- Processing  

 The difficulties expressed by children with a MD can be attributed to four types of 

deficits in psychological processes: visual-spatial processing, attention, memory, and 

strategy use (Augustyniak, Murphy, & Kester Phillips, 2005; Shalev, 2004; Strang & 

Rourke, 1985). According to information-processing theory, deficits in these processes 

will lead to overall deficits in the ability to process information and thus the ability to 

learn. 

Visual-spatial processing deficits refer to the misinterpretation and misunderstanding 

of visual information and difficulties in the spatial organization of mathematical 

information (Augustyniak et al., 2005; Geary, 2003; Strang & Rourke, 1985). Common 

errors experienced by individuals with visual-spatial processing deficits when working on 

Mathematics problems include difficulties placing numbers in columns and errors in 

reading Arithmetic signs (Ardila & Rosselli, 2002). Geary (1993) found that this 

cognitive profile was so prevalent and consistent among a subgroup of children 

diagnosed with a MD that it warranted classification as a specific subtype of MD.  
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Attentional difficulties are also common among children with a MD (Ardila & 

Rosselli, 2002). Rosenberger (1989) found that children with significant math difficulties 

scored higher on a measure of inattention and lower on a measure of freedom from 

distractibility than controls. Although Rosenberger (1989) found no significant 

differences between children with and without significant math difficulties on a measure 

of hyperactivity, impulsivity and poor peer relations, Gross-Tsur and colleagues (1996) 

found that 26% of children with a MD had comorbid ADHD. Another study found 

symptoms of Attention Deficit Disorder (ADD) in 32% of children with a MD (Shalev, 

Auerbach, & Gross-Tsur, 1995). Overall, poor regulation of attention is a distinct 

characteristic of many individuals with significant problems in Mathematics.  

Memory deficits, such as difficulties in memory retrieval and working memory, are 

frequently identified skill deficits in individuals with a MD. Koontz and Berch (1996) 

compared children with a MD and a control group on digit and letter span tasks. Results 

showed that children with a MD had significantly lower scores than control children on 

both tasks (Koontz & Berch, 1996). Poor numerical digit span has been associated with 

MD in several other studies (Geary & Brown, 1991; Swanson & Beebe-Frankenberger, 

2004). However, there have been other studies that compared the working memory of 

children with and without a MD and the results have been less conclusive (McLean & 

Hitch, 1999; Temple & Sherwood, 2002), suggesting that working memory deficits are 

not sufficient to cause a MD (Butterworth, 2005). Overall, though, it is widely accepted 

that children with a MD have memory difficulties and that these memory deficits 

contribute to difficulties in performing Mathematics (Geary, 1993; Geary & Hoard, 2001; 

Ginsburg, 1997; Jordan & Montani, 1997; Shalev & Gross-Tsur, 2001). 
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Children with LDs in general tend to overextend and inconsistently apply cognitive 

strategies (Augustyniak et al., 2005). Children with a MD in particular tend to use 

immature strategies (Geary, 1994) such as using fingers as an aid in single digit addition 

problems beyond the developmentally appropriate age (approximately age seven). 

Immature strategies and poor strategy execution are likely to lead to inefficient and 

unreliable cognitive processing and thus, poor academic performance. 

In sum, individuals with LDs tend to have specific psychological processing 

difficulties that impede the individual’s ability to acquire, retain, and use knowledge and 

skills, such as Mathematics. Visual-spatial processing, attention, memory, and strategy 

use are noted as particular weaknesses among children with a MD. Information-

processing theorists would argue that these qualitative differences in psychological 

processing between typically and atypically developing children are the reason children 

with a MD experience significantly more difficulty acquiring Mathematics skills than 

typically developing children. 

Treatment 

Since the overall research on MD is relatively rudimentary, it is not surprising that the 

research on interventions for children with a MD is extremely limited. Codding, Eckert, 

and colleagues (2007) noted this dearth of research investigating the effectiveness of 

Mathematics interventions. The treatments that are described are diverse, reflecting the 

various definitions and etiologies within the existing literature (Kronenberger & Dunn, 

2003). The reported interventions can be divided into two categories: strategies and 

formal programmes (where a programme is defined as a collection of strategies that were 
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selected based on theory and research in order to achieve a specific goal and a formal 

programme is a programme that has been designed and evaluated objectively). 

Augustyniak and colleagues (2005) suggest several strategies for remediation of 

specific deficits in Mathematics. For example, for students whose difficulties in 

Mathematics are primarily caused by visual-spatial deficits, Augustyniak and colleagues 

(2005) suggest providing students with copies of the Math problems (instead of having 

them copy from the chalkboard), providing students with grid paper, and using visual 

aids, such as an overhead projector. Kronenberger and Dunn (2003) suggest flash cards 

and repeated practice as interventions to build fluency with the multiplication tables. 

Last, Shalev (2004) suggests assistive technology as a potentially successful strategy. For 

example, interactive computer games have been suggested for building problem-solving 

skills (Lewis, 1998) and calculators can be used to compensate for poor fact retrieval 

(Ginsburg, 1997). The majority of the available literature on Mathematics interventions 

consists of common-sense strategies to build specific Mathematics skills.  

Schools most often employ informal remediation programmes, such as withdrawal 

support. When a student receives withdrawal support, he or she attends regular class for 

the majority of the school day. However, for less than 50 per cent of the school day, he or 

she receives instruction outside of the classroom from a qualified special education 

teacher. The content, pace, instruction, etc. of the withdrawal support are determined by 

the special education teacher. As such, there will be considerable variability in the quality 

of withdrawal support across different schools; some children with a MD will receive a 

high quality intervention while others will be underserved. In addition, the quality of 

programming will likely go undetected as the special education teacher who designs the 
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intervention is likely the same person responsible for evaluating the programme’s 

effectiveness. 

Formal programmes offer more consistency, objective evaluation, and are more likely 

to be theory-based. There are a handful of formal remediation programmes for children 

experiencing significant difficulties in Mathematics. For example, a school website listed 

several formal Mathematics intervention programmes for elementary school children 

such as KeyMath Teach and Practice and the Lightspan Math Programme (Mississippi 

Department of Education, 2006). KeyMath Teach and Practice serves as a supplemental 

or remedial programme to help develop children’s mathematical concepts, operations, 

and applications (Pearson, 2006). Lightspan has a series of curriculum-based educational 

video games that target reading, Language Arts, and Mathematics for students in 

Kindergarten to grade eight (Business Editors, 2000).Unfortunately, a PsycInfo search of 

these programmes returned no results; the effectiveness of these programmes is unknown. 

There are several formal intervention programmes targeting specific mathematical 

deficits that have been scientifically evaluated. Great Leaps Math is a supplemental Math 

programme designed to target fluency of Math facts (Jolivette, Lingo, Houchins, Barton-

Arwood, & Shippen, 2006). This programme is built upon a 5-step strategy: (a) the 

child’s teacher greets the student and tells him or her that the lesson is about to begin; (b) 

reviews previously acquired Math facts; (c) teaches new concepts; (d) administers a one-

minute fluency probe; and (e) graphs correct and incorrect responses (Jolivette et al., 

2006). Jolivette and colleagues (2006) found that this intervention programme helped two 

children with developmental delays and one child with ADHD to obtain greater 

mathematical fluency in addition. This study does have its limitations. First, the sample 
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size is extremely small. The results, therefore, may not be generalizable to the intended 

population. Second, the study did not include a control group so the gains measured at 

post-testing cannot unequivocally be attributed to the Great Leaps programme. Last, the 

Great Leaps programme only targets single-digit Arithmetic problems and only requires 

oral responses to fluency probes. As such, there is limited room for growth in numerical 

operations and mathematical reasoning. This programme has not been systematically 

evaluated since Jolivette and colleagues’ (2006) study according to a recent PsycInfo 

search.  

The Cover, Copy, and Compare (CCC) method appears to hold the most empirical 

support for a Mathematic intervention programme targeting fluency of basic math facts. 

CCC is a self-managed intervention that involves 5 simple steps: “a) look at the 

Mathematics problem with the answer, b) cover the Mathematics problem with the 

answer, c) record the answer, d) uncover the Mathematics problem […] and e) compare 

the answer” (Codding, Shiyko, et al., 2007). Although the principles of this intervention 

may seem overly simplistic, CCC has been proven through empirical research to be an 

effective intervention (Codding, Eckert, et al., 2007). Significant increases in 

computational fluency were found when CCC was introduced as an intervention for 

second and third grade general education students (Codding, Shiyko, et al., 2007). CCC 

was also successful in improving Math fact accuracy and fluency for a 10-year-old 

student with moderate MR (Poncy et al., 2007). A CCC intervention also helped a third 

grade student with a MD increase her accuracy for multiplication problems (Stading, 

Williams, & McLaughlin, 1996); however, it is unclear whether her fluency improved as 

a result of the CCC intervention because this variable was not measured. In sum, there 
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are various intervention programmes designed to enhance mathematical skills although 

the majority of these programmes lack empirical support.  

In conclusion, MD is an area in need of further research and development from its’ 

diagnostic criteria to its intervention. This research is important because MD is fairly 

prevalent and the disorder can have a serious, lifelong impact if left untreated. 

Kumon 

Kumon Method of Learning 

Kumon is the most popular after school academic programme in the World with over 

2.6 million students (Izumi, 2001). Kumon has Centres in 44 countries and has over 

40,000 students in Canada alone (Izumi, 2001; L. Kaul, personal communication, June 

26, 2008). Kumon’s Mathematics and Reading programmes are used by children with 

varying abilities, from individuals with disabilities (Autism, MR, LDs, etc.), typically 

developing individuals to gifted students. The programmes are also used by children in 

varying grades (from preschool to postsecondary education) (KTRIE, 2002; McKenna et 

al., 2005).  

The Kumon programmes were designed to supplement public education (McKenna et 

al., 2005). Most school boards take a spiral approach to Mathematics and Reading 

instruction; teachers introduce many skills and then spiral back at a later time to further 

develop each skill (KNA, 2008). Kumon’s approach is linear (KNA, 2008). Kumon 

instructors introduce one topic at a time and will not advance a student until he or she 

demonstrates mastery of the lower level skill (KNA, 2008). Still, Kumon is meant to 

complement, not replace, general education received at school (KNA, 2008). 



51 

 

Toru Kumon developed the Kumon Method of Learning 50 years ago in Japan (KNA, 

2008). Toru was a high-school Mathematics teacher as well as a Father (Izumi, 2001).  

Toru’s son was struggling in Mathematics so Toru created a series of worksheets for his 

son to complete every day after school (Izumi, 2001).  Toru’s son started working with 

these worksheets in grade two and by the time he was in the sixth grade he was able to do 

Calculus (KNA, 2008).  

The Kumon Method of Learning comprises seven components (Izumi, 2001): 

• Individualized learning–Kumon students work and advance at a pace dictated by the 

individual’s abilities and initiative (KNA, 2008). The instructor’s primary goal is to 

pursue and help children attain the highest potential of each unique student (KNA, 

2008). 

• Independent learning–the level of difficulty progresses so gradually that students 

advance smoothly and independently. As a result, students develop self-motivation 

and self-reliance (KNA, 2008).  

• Comfortable starting point–each student’s starting point is determined by a Placement 

Test (KNA, 2008). The starting point is intentionally set low so that initial work is 

completed and mastered easily (KNA, 2008). This initial success fosters 

concentration, study habits, confidence, and proficiency with later steps (KNA, 

2008). 

• Curriculum–the study materials are organized so that skills develop incrementally and 

in a logical progression. The levels of the Math programme are divided into smaller 

steps. For each step, students complete a 10 page worksheet booklet (or set).  
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• Repeated practice–the Kumon Method ensures comprehension and retention by 

requiring daily practice (KNA, 2008). The amount of practice for each worksheet and 

each level is determined by the student’s needs and performance.  

• Mastery–Kumon assesses speed and accuracy to determine mastery. Students are said 

to have mastered a level when they achieve 100% accuracy on an assignment within a 

prescribed time period (KNA, 2008). 

•  Advanced level of study–“Kumon’s goal is for all students to attain advanced student 

status as early as possible” (Izumi, 2001, p. 65). Students are expected to advance 

three levels or more from their entry level within one year of study (Niikura, 2006b). 

When a student first enrolls in Kumon, he or she must write a placement test. Based 

on the student’s performance on this test, the student is assigned a starting level; there are 

26 levels in the Math programme and 24 levels in the Reading programme. Following 

placement, students are to complete daily worksheets that are completed in about 20 

minutes. Twice a week, Kumon students must also go to a Kumon Centre where they are 

to complete their daily worksheets and pick up more worksheets for the rest of the week. 

Immediately after students complete their worksheets they should be graded by either a 

parent (if at home) or the instructor (if at the Centre). Students then correct any mistakes. 

After completing all the required worksheets for a given level with adequate accuracy 

and speed, students are given an Achievement Test to ensure that that level is in fact 

mastered. If the student is able to complete the Achievement Test with accuracy and 

speed, the student advances to the next level (KNA, 2008). 

The Kumon Method of Learning, including individualized learning, independent 

learning, comfortable starting point, curriculum, repeated practice, mastery, and advanced 
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level of study, has helped millions of students worldwide, according to anecdotal reports. 

Despite Kumon’s popularity and personal testimonials, only one empirical study of its 

effectiveness surfaced in a recent PsycInfo search (McKenna et al., 2005). McKenna and 

colleagues (2005) measured the effectiveness of the Kumon Mathematics programme for 

economically disadvantaged children in grades two through five. Results showed that 

children receiving Kumon Mathematics instruction had greater improvements in 

Mathematics skills than a control group after 7 months of instruction and that those gains 

were maintained 2 years later (McKenna et al., 2005). However, this study has several 

limitations. First, children’s achievement in Math is highly variable in grades one and 

two (APA, DSM-IV-TR, 2000) and thus including grade two students in the sample may 

have skewed the results. Second, 98% of the participants in this study were African 

American so the study’s results may not be generalizable to the general population. Far 

more troublesome than the limitations of McKenna and colleagues’ (2005) study is the 

fact that this is the only published empirical study investigating Kumon’s effectiveness. A 

Math programme used by millions of students (gifted, average, learning disabled, and 

otherwise) should have more evidence-based support. 

Kumon Mathematics Programme 

When Kumon was first established in 1958 it consisted only of a Math programme 

(Niikura, 2006a).Since then, the basic principles of the Kumon Math programme have 

remained the same but the levels and worksheets have been revised (KNA, 2008). The 26 

levels of the Math programme are listed and described in Table 1. 
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Kumon and Gifted Students 

The Kumon programme is used extensively by gifted students for enrichment in 

Mathematics and Reading. Kumon meets many of the gifted child’s educational needs 

because the programme is flexible, individualized, and sequential (McKenna et al., 2005). 

Gifted Math students, for example, can work through Mathematics materials without 

having to wait for his or her peers to catch up as they often do in general education 

classrooms (McKenna et al., 2005). The only study conducted on the Kumon programme 

that is published in a peer reviewed journal investigated the potential of the Kumon Math 

programme as an enrichment programme that would “attend to the potential giftedness of 

economically disadvantaged students [and] to give opportunities for Mathematics 

acceleration …” (McKenna et al., 2005, p. 223). Although McKenna and colleagues 

(2005) found that Kumon students demonstrated significantly greater gains in 

Mathematics skill levels than non-Kumon students, the study did not address giftedness 

in their selection or assessment of participants or in their results or discussion sections. 

Research on the effectiveness of the Kumon programme for gifted students is clearly in a 

very early stage. 

Kumon and Students with Disabilities 

Kumon Mathematics and Reading programmes are primarily used by average-

achieving and gifted children; however, there are a significant number of children with 

disabilities who make use of these programmes. KTRIE (2002) reported that there are 

approximately 4,700 students with disabilities enrolled in Kumon Centres in Japan. For a 

description of the types, numbers, and ratios of students with disabilities in Japanese 

Kumon Centres, see Table 2. These demographics should be interpreted with caution; the 
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diagnostic criteria used to identify individuals with disabilities in the KTRIE (2002) study 

are unknown. 

The Kumon philosophy is that every child has the possibility to grow and that every 

child should be guided to reach his or her full potential (KNA, 2008; KTRIE, 2002). 

KTRIE (2002) reported that “expand[ing] and develop[ing] one’s strong point … is 

important when instructing normal children, however, it is more important when 

instructing disabled children” (p. 2). Kumon cannot be used to treat a child’s disability. 

Rather, Kumon enhances and develops the child’s capacity to learn (or strong point) 

which can make the child’s disabilities seem less debilitating in comparison to his or her 

newfound abilities (KTRIE, 2002).  

The Kumon Method also includes the tenet that students should learn at their own 

pace (KTRIE, 2002). This flexibility is important for students with disabilities as they 

often learn at a much slower pace than typically developing children (KTRIE, 2002). 

Even within groups of children with the same diagnosis there will be variability in the 

rate at which each child learns. In sum, although Kumon was originally designed for 

average-achieving children, the Kumon Method of Learning also addresses the special 

needs of children with disabilities. 

The effectiveness of the Kumon programmes for children with disabilities has not 

been investigated empirically. However, there is an anecdotal report of the effectiveness 

of the Kumon Mathematics programme for an 18-year-old with Down syndrome 

published in a journal (Haslam, 2007). Haslam (2007), the teenager’s Mother, suggested 

that it was the small steps and practice in the Kumon programme that allowed her son to 

succeed in Mathematics. Parent reports of the benefits of Kumon add valuable 
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information and support for further use of the program. Nevertheless, objective, 

quantitative support is needed.  

Kumon and Students with Learning Disabilities 

To the current author’s best knowledge, there is no research or literature pertaining to 

the effectiveness of the Kumon Mathematics programme for children with any LDs, 

including MD. The predictions of the current research study, therefore, have been made 

based on knowledge of behavioural and cognitive learning theories, the characteristic 

deficits of MD, the treatment strategies and programmes that have previously been 

proven effective for children with MDs, and the tenets of the Kumon Method of 

Learning.  

Summary of Literature Review 

Learning theory is used to guide understanding of the development of mathematical 

ability. Behavioural Psychology’s learning hierarchy model and Cognitive Psychology’s 

information-processing model are especially useful in studying typical and atypical 

development in Mathematics. These models are useful in interpreting whether the 

differences between children with Mathematics Disorder, average achieving children, and 

gifted children are quantitative, qualitative, or both. Another important area within the 

literature on Mathematics is the issue of whether differences exist between the genders in 

terms of mathematical ability.  

The knowledge base of effective remedial and enrichment Mathematics programmes 

is insufficient. Kumon is an afterschool Math programme that claims to be effective for 

children of varying abilities. There is only one empirical study that has investigated 
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Kumon’s effectiveness in a scientific manner. This is unacceptable considering that the 

program is used by hundreds of thousands of children across the World. 

In sum, the current state of knowledge demands systematic, quantitative research of  

Mathematics programmes for children of varying abilities. Since Kumon seems to be a 

promising intervention (based on a review of the available literature and anecdotal 

evidence) and its’ use is so ubiquitous, the current study will begin to add to the current 

literature by investigating the effectiveness of Kumon as a remedial and enrichment 

Mathematics programme. Chapter three will describe the research method that will be 

used to accomplish this goal. 
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CHAPTER III: METHOD 

Chapter three describes the research design that was used to test the hypotheses of 

this study. In addition to the research design, this section describes the participants, 

instruments and materials, procedure, and method of analysis of the current research 

project. 

Research Design 

The optimal research design to determine the effectiveness of the Kumon Math 

programme is a pretest posttest control-group design with random assignment. Due to 

financial, time, and logistical constraints, random assignment of participants and 

inclusion of a control group was not possible. The current study, therefore, had a 

nonexperimental design. More specifically, this study had a causal comparative research 

design.  

Participants 

Forty six Kumon centres in the Greater Toronto Area were approached to participate 

in this study. Eighteen Centre Instructors consented. All grades four, five, and six 

students who enrolled in the Math programme at any of these eighteen centres between 

January 1, 2009 and February 28, 2009 were invited to participate. Parental consent was 

obtained for thirty seven students. Fifteen of the largest Kumon centres in the Greater 

Vancouver Area were contacted in February, 2009 to increase the study’s sample size. 

Five participants were recruited from the Vancouver centres. The study, therefore, had an 

initial sample size of forty two students. 
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Instruments and Materials 

Canadian Achievement Test, Third Edition 

The Canadian Achievement Test, Third Edition (CAT-3) is a group administered, 

standardized test designed to assess achievement in Reading, Language, Spelling, 

Mathematics, and Writing (Anderson, 2005; Soares, 2005). The response format of the 

CAT-3 basic battery and supplemental tests is multiple-choice. Scores are available in the 

form of scaled scores, national percentiles, stanines, and grade equivalent scores 

(Anderson, 2005).  

There are 10 test levels that correspond with specific school grades (grade one to 

postsecondary education) (Anderson, 2005). Within each test level there are three 

categories: basic battery, supplemental tests, and constructed response (see Table 3) 

(Soares, 2005). Although administration time varies with the level of the test, 

administration typically takes 85-115 minutes for the basic battery, 55-75 minutes for the 

supplemental tests, and 40-230 minutes for the constructed response sections (Spies & 

Plake, 2005). To administer only the Mathematics subtests, administration takes 

approximately 110 minutes [45 minutes for the Mathematics subtest (basic battery), 25 

minutes for computation and numerical estimation (supplemental battery), and 40 

minutes for the constructed response subtest].  

The CAT-3 contains three Mathematics batteries. The basic battery (Mathematics 

subtest) assesses mathematical reasoning (Canadian Testing Centre, 2008). The 

computation and numerical estimation subtest assesses the ability to solve basic Math fact 

equations and to make mathematical estimations. The constructed response subtest 

assesses mathematical reasoning and the ability to communicate mathematical reasoning 
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skills through written response (Canadian Testing Centre, 2008). The written responses 

are graded subjectively and thus the reliability of scoring comes into question with 

administration of this subtest. Thus, the constructed response battery was not included in 

the current study. 

Test items were drawn from the Comprehensive Test of Basic Skills, Fourth Edition 

(CTBS-4) and revisions were made to reflect the curriculum taught in Canadian schools 

and the metric system (Michalko & Saklofske, 1996). New items created by Canadian 

teachers as well as Language Arts and Mathematics specialists were also added 

(Michalko & Saklofske, 1996; Soares, 2005).  

The CAT has been used as a measure of academic achievement in several Canadian 

studies. Dahinten, Shapka, and Willms (2007) used the CAT-2 to assess the mathematical 

achievement of adolescents and their Mothers. The researchers found several correlations 

between child-Mother Mathematics scores on the CAT-2 and maternal variables, such as 

the Mother’s age and education (Dahinten et al., 2007). Unfortunately, these authors did 

not review the CAT-2, nor did they evaluate the appropriateness of the CAT-2 for their 

study.  

The strongest support for use of the CAT-3 in the present study comes from the fact 

that the CAT has been used as an exemplar of psychometrics in the evaluation of several 

other achievement tests. Michalko and Saklofske (1996) administered the Wechsler 

Individual Achievement Test (WIAT) and the CAT-2 to a sample of Canadian children in 

order to determine the appropriateness of the WIAT with Canadian subjects. More 

recently, Saklofske, Caravan, and Schwartz (2000) used the CAT-2 as a comparison 

measure with the Wechsler Abbreviated Scale of Intelligence (WASI) for a sample of 
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Canadian children.  Both groups of researchers chose the CAT-2 as a comparison 

measure because it has strong psychometric properties and Canadian norms (Michalko & 

Saklofske, 1996; Saklofske et al., 2000). 

The CAT is considered one of the most psychometrically sound measures of 

academic achievement in Canada (Bachor & Summers, 1985). Systematic, national 

norming of the CAT-3 was conducted with a sample of over 44,000 students from 211 

Canadian schools (Anderson, 2005). This sample was described by the authors as 

representative of the national population (Soares, 2005). Based on analysis of the internal 

structure of the CAT-3, the authors concluded that this test can be used to measure the 

achievement of specific composites (Language Arts, Mathematics, etc.) across grade 

levels (Soares, 2005). Factor analysis confirmed that the CAT-3 measures specific 

constructs (Language Arts and Mathematics) (Soares, 2005). Chronbach alpha internal 

consistency coefficients ranged from .72 to .92 among subtests (Anderson, 2005). Most 

coefficients (83%) exceeded .80 and few (9%) exceeded .90 (Anderson, 2005), which 

means that the items of each individual subtest measure the same skill.  

The CAT is one of the most widely used measures of academic achievement in 

Canada (Bachor & Summers, 1985). The Mathematics subtests of this measure are 

appropriate for the current study because the sample of children to be tested are Canadian 

and are representative of the national population; “test scores and clinical interpretations 

may be misleading if the item content and normative data of a test do not reflect the 

learning, language, culture, and experiential background of the child or children 

assessed” (Michalko & Saklofske, 1996, p. 45). Based on format, purpose, development, 

recent literature, and technical qualities, the CAT-3 is an appropriate measure of the basic 
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academic skills, such as Mathematics, for use with school-aged children (Anderson, 

2005; Soares, 2005). As such, the CAT-3 was an appropriate measure of mathematical 

achievement for the current study.  

Canadian Cognitive Abilities Test 

The Canadian Cognitive Abilities Test (CCAT) is a group administered standardized 

test designed to assess students’ reasoning and problem solving skills in verbal, 

quantitative, and spatial domains (Thorndike & Hagen, 1998). There are two editions, the 

Primary Battery and the Multilevel Edition (Thorndike & Hagen, 1998). The Primary 

Battery is used with children in Kindergarten through grade two and the Multilevel 

Edition is used with children in grades three through twelve (Thorndike & Hagen, 1998).  

Both editions yield Verbal, Quantitative, Non-Verbal and Composite scores 

(Thorndike & Hagen, 1998). Within the Multilevel Edition there are eight levels (A-H) 

(Thorndike & Hagen, 1998). The Verbal battery assesses “verbal inductive and deductive 

reasoning skills as well as flexibility, fluency, and adaptability in working with verbal 

materials and solving verbal problems” (Thorndike & Hagen, 1998, p. 8). The 

Quantitative battery assesses similar skills but in relation to quantitative symbols and 

concepts (Thorndike & Hagen, 1998). The Non-Verbal battery taps the student’s general 

inductive reasoning skills and the ability to use and adapt cognitive strategies (Thorndike 

& Hagen, 1998). The Composite score incorporates the Verbal, Quantitative, and Non-

Verbal scores to provide an indication of the student’s overall level of cognitive abilities, 

or “g” (general intelligence) (Thorndike & Hagen, 1998). Within each battery there are 

three subtests. For a list of these subtests, see Table 4. 
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All questions on the CCAT are in multiple-choice format (Thorndike & Hagen, 

1998). Each question has five possible answers with the exception of the Quantitative 

Relations subtest which contains questions with only three answer choices (Thorndike & 

Hagen, 1998). There are specific time limits for each subtest which make for a total 

administration time of about two hours (Hattie, 1995).  

The CCAT yields four types of scores: Universal Scale Scores (USS), Standard Age 

Scores (SAS), percentile ranks, and stanines (Thorndike & Hagen, 1998). The USS are 

standardized scores used for comparing an individual’s scores across the various CCAT 

levels (if administered in successive years) (Anderson, 1995). The SAS are standard 

scores that allow comparison of individuals to others in the same age group (Thorndike & 

Hagen, 1998). These scores are normalized with a mean of 100 and a standard deviation 

of sixteen (Thorndike & Hagen, 1998). Percentile ranks and stanines are available based 

on both grade and age (Anderson, 1995). 

The items within the CCAT are based on those of the Cognitive Abilities Test 

(CogAT) but contain some modifications such as changes in spellings and systems of 

measurement to make the test more appropriate for Canadian students (Hattie, 1995). The 

only major adaptation from the CogAT was the development of Canadian norms 

(Anderson, 1995). 

The Canadian norms for the CCAT are psychometrically sound. Approximately 

30,000 students nation-wide were used to standardize and create these norms (Thorndike 

& Hagen, 1998). Reliability of the CCAT is also said to be respectable. The internal 

consistency estimates for the three subtests at all levels are between .81 and .94 

(Anderson, 1995). Researchers also measured the stability of scores over time and found 
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that the test does generate consistent results (Anderson, 1995). Both Anderson (1995) and 

Hattie (1995), reviewers of the CCAT, state that validity is inadequately addressed in the 

CCAT technical manual. However, there is reported evidence of the CCAT’s criterion-

related validity (Anderson, 1995). Correlations between scores on the CCAT and the 

Canadian Test of Basic Skills (CTBS) are between .40 and .80, providing moderately 

positive evidence of convergent validity (Anderson, 1995). CCAT Verbal scores were 

also correlated with the Henmon-Nelson Ability Test (between .78 and .84), a measure of 

general ability (Anderson, 1995). In sum, the CCAT has desirable psychometric 

properties as a measure of cognitive ability. 

The CCAT has been used is past research as a measure of children’s cognitive ability. 

Johnson, Im-Bolter, and Pascual-Leone (2003) selected the sample for their study by 

reviewing students’ scores on the CCAT as it had already been administered by their 

classroom teachers. Johnson and colleagues (2003) categorized children as gifted or 

mainstream based on their Wechsler Intelligence Scale for Children, Third Edition 

(WISC-III) or CCAT scores. Unfortunately, Johnson and colleagues (2003) did not 

define the cutoff point for inclusion in the gifted group. Schneider, Clegg, Byrne, 

Ledingham, and Crombie (1989) recruited gifted children for their study from schools 

that routinely administer group IQ tests such as the CCAT and the Henmon-Nelson Test 

of Mental Ability. The researchers reviewed records of students’ past scores and selected 

children scoring 129 or higher on the Henmon-Nelson or above the 97th percentile on the 

Verbal section of the CCAT (Schneider et al., 1989). The Verbal section scores of the 

CCAT were used (as opposed to the Quantitative, or Non-Verbal scores) “because of its 

high correlation with the Henmon-Nelson” (Schneider et al., 1989, p. 50). The CCAT has 
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also been administered within the study, as opposed to using CCAT scores obtained prior 

to the study. Westbury (1994) administered the CCAT to two groups of students, those 

who were held back one school grade and those who advanced typically. The CCAT 

served as a pre- and post-test measure of cognitive ability and allowed Westbury (1994) 

to suggest that grade retention did not improve children’s abilities in three years time. In 

sum, the CCAT has been used in past research as a measure of students’ general 

cognitive functioning. Past researchers as well as CCAT reviewers agree that the CCAT 

is a useful instrument for determining students’ cognitive ability and is a valuable 

research tool (Anderson, 1995; Hattie, 1995).  

Procedure 

Recruitment of Participants 

After receiving permission from the University of Lethbridge Ethics Committee and 

the individual Kumon Centre Instructors, Instructors were asked to give consent forms to 

the parents of all eligible students. Pretesting was scheduled after parents returned signed 

consent forms. 

Preparation 

Protocols were prepared prior to the testing date. The participant’s grade determined 

which CAT-3 and CCAT levels were administered and thus which protocols were 

prepared (see Table 5). To protect participant’s anonymity, each student was assigned a 

six digit code. The first two digits represented the child’s centre, the third digit 

represented the student’s grade, and the last three digits indicated the order in which the 

participant was tested, relative to the total number of participants at his or her centre (i.e., 

001, 002, etc.). This code was the only identifying information on the protocols.  
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Pretesting 

Pretesting occurred between January 14th, 2009 and April 1, 2009. The vast majority 

of pretesting in the Greater Toronto Area was completed by the lead researcher. When 

multiple pretesting sessions were scheduled on the same day, Kumon Field Staff helped 

in test administration. The lead researcher trained the Field Staff on administration 

procedures prior to commencing pretesting. All testing in the Greater Vancouver Area 

was completed by Kumon Field Staff members. 

Testing took place at the student’s Kumon centre during his or her regularly 

scheduled Kumon class time. The CAT-3 subtests were written on the first day of testing. 

The Mathematics subtest was written first, followed by the computation and numerical 

estimation subtest. The CCAT Verbal subtests were written on the second day of testing 

in the following order: Verbal Classification, Sentence Completion, and then Verbal 

Analogies. For a summary of the order of testing, see Table 6. The average length of time 

between the first and second day of testing was 14 days (SD = 11).  

There was some variability in testing conditions due to the fact that there is 

variability in the amount of space available at each Kumon centre. Most Instructors were 

able to designate a table to testing in the corner of the classroom. In a few cases, the 

testing table was shared with Kumon students who were not participating in the study. 

The examiner and examinee(s) were the only people sitting at this table when possible. 

When there were multiple participants completing testing at the same table, seating was 

arranged so that students could not see each other’s answers.  
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Noise levels also varied across testing. For the most part, noise was kept to a low 

whisper but sometimes the noise level escalated to a medium volume (people talking near 

the testing table using their regular speaking voices).  

Before administering any assessment measures, the examiner explained the purpose 

of the study by saying, “I’m doing a study to see how Kumon helps grade 4, 5, and 6 

students to learn Math. Here is a form that explains this study [examiner presented assent 

form]. Would you like to read this form yourself or would you like me to read it to you? 

[read form if asked]. Do you have any questions?” After all questions were answered, the 

examiner asked the student to print his or her name on the assent form if he or she was 

willing to participate. 

The examiner then briefly explained the purpose of administering the CAT-3. The 

examiner said, “This test is called the Canadian Achievement Test and it will be used to 

measure your Math skills.” The examiner then read and followed the directions for test 

administration as outlined in the CAT-3 examiner’s manual for both CAT-3 subtests. 

Upon completing the test, the examiner thanked the participant for his or her time and 

effort and reminded him or her of the upcoming CCAT testing. 

On day two of pretesting, the examiner briefly reviewed the purpose of the study with 

the participant(s) and obtained verbal assent to proceed. The examiner then introduced 

the CCAT by saying, “Today you are going to take a test called the Canadian Cognitive 

Abilities Test. There are many different kinds of problems on this test. We want to find 

out how well you can solve them.” Directions for CCAT administration were then 

followed as outlined in the test manual. Once the participants finished writing the three 

CCAT Verbal subtests, the examiner informed them that they have completed all the 
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requirements for the first part of the research study. The examiner explained that he or 

she would be back in six months to complete the second part of the study. Last, students 

were thanked for their time and effort.  

Posttesting 

Posttesting began on July 14, 2009 (six months after pretesting began) and ended on 

October 22, 2009. Posttesting and pretesting conditions were very similar. Testing 

occurred at participants’ Kumon centres during their regularly scheduled class time, 

participants were secluded in the corner of the Kumon classroom while they completed 

testing when possible, and noise levels fluctuated between low and medium.  

The CAT-3 subtests administered at posttesting were the same (subtests and level) as 

those administered at pretesting. Participants were not re-administered the CCAT. See 

Table 7 for a list of the posttesting measures administered. Verbal assent was obtained 

prior to beginning testing. The examiner then followed the CAT-3 administration 

directions. All posttesting in the Greater Toronto Area was completed by the lead 

researcher. All posttesting in the Greater Vancouver Area was completed by Kumon 

Field Staff.  

Last, the examiner determined how many worksheets each participant completed in 

the Kumon programme between pretesting and posttesting. A ‘successfully completed 

worksheet’ was defined as a single worksheet completed with adequate speed and 

accuracy as determined by the child’s Kumon Instructor. In other words, a successfully 

completed worksheet was not re-assigned by the Instructor. 
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Method of Analysis 

The purpose of the study is to investigate the effectiveness of the Kumon 

Mathematics programme for children of varying abilities. Specifically, the research 

questions guiding this study are:  

1. Is there a difference between male and female participants in terms of their pretest 

scores, posttest measures, or the gains they made on the CAT-3? 

2. Is there a difference in the magnitude of gains made in Math skills among children of 

different achievement groups (below average, average, above average, and “gifted”)? 

3. Is there a difference in the magnitude of gains made on a measure of computation 

skills versus mathematical reasoning skills after six months of participating in the 

Kumon Math programme? 

4. What is the relationship between children’s participation in the Kumon Mathematics 

programme and their achievement in Mathematics?  

Hypothesis One: Gender Differences in Mathematical Ability 

The null hypothesis is that there is no difference between males and females in terms 

of mathematical ability as measured by the CAT-3. More specifically, there is no 

significant difference between genders in terms of pretest scores (CAT-3 scaled scores or 

CCAT standard age scores), number of Kumon worksheets completed, posttest scaled 

scores on the CAT-3 subtests or gains made on the CAT-3 subtests between pre- and 

posttesting (difference in scaled scores). An independent samples t-test was used to test 

the null hypothesis. 
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Hypothesis Two: Children of Varying Mathematical Ability 

Categorization of Participants 

In order to test the second null hypothesis, participants had to be categorized into 

achievement groups. The participants were first categorized based on their pretest CCAT 

standard age score. Children who scored between 69 and 131 were categorized as having 

average cognitive abilities. Children who had a score greater than 131 were categorized 

in the above average cognitive abilities group.  

The average cognitive abilities group was then further divided based on their 

percentile ranking on the CAT-3 Total Math subtest. There were four achievement 

groups: below average, average, above average, and “gifted” (see Table 8 for the 

corresponding percentile ranking ranges).  

The below average group includes students who may have a MD. However, 

participants in this group were labeled ‘below average” because children cannot be 

formally identified as having a MD based on the data collected in the current study. 

Similarly, students at the upper extreme of achievement at pretesting were labeled as 

“gifted”, as they cannot definitively be identified as gifted using the information gathered 

in the current study.  

Method of Analysis 

The null hypothesis is that there is no difference among achievement groups in the 

gains made on the CAT-3 Mathematics subtest or the CAT-3 computation and numerical 

estimation subtest. The directional hypothesis is that “gifted” students have the greatest 

gains, followed by the above average students, followed by the average students, who are 
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followed by the below average students. A one-way Analysis of Variance (ANOVA) was 

used to test the null hypothesis. 

A limitation of using the CAT-3 as the measure of mathematical ability is that it does 

not have a high enough ceiling to capture gains made by gifted students. As such, 

achievement in Mathematics was compared among achievement groups using a second 

measure, number of Kumon worksheets completed. The null hypothesis is that there is no 

difference in the number of steps completed among the four achievement groups. The 

directional hypothesis is that “gifted” students complete the greatest number of 

worksheets, followed by above average students, followed by average students, followed 

by below average students. A one-way ANOVA was used to test the null hypothesis. 

Hypothesis Three: Kumon Mathematics Programme 

The null hypothesis is that there is no difference in the gains made in computation 

skills versus gains made in mathematical reasoning skills. The directional hypothesis is 

that gains made on the CAT-3 computation and numerical subtest will be significantly 

greater than gains made on the CAT-3 Mathematics subtest (a measure of mathematical 

reasoning). A paired samples t-test was used to test the null hypothesis. 

Hypothesis Four: The Relationship between Kumon and Achievement in Mathematics 

The null hypothesis is that gains made in Mathematics skills cannot be predicted 

based on a measure of participation in the Kumon Math programme (number of 

worksheets completed). The directional hypothesis is that gains made in Mathematics can 

be predicted based on the number of Kumon Math worksheets a child completes. Since 

Kumon worksheets focus on computation exercises, it was predicted that the results from 
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the current study will only support the directional hypothesis for gains made in 

computation skills.  

The second null hypothesis is that the relationship between gains made in 

computation skills cannot be predicted based on pretest achievement scores. The 

directional hypothesis is that there is a positive relationship between gains made on the 

computation and numerical estimation and pretest scores on the same subtest. 

Furthermore, a model that examines the predictive ability of the two variables (number of 

Kumon worksheets completed and pretest computation scores) together will explain more 

variance in gains made in computation skills than models that examine the relationships 

between the predictor and criterion variables separately.  

Multiple regression analyses were used to test the null hypotheses. Separate analyses 

were required, one for each criterion variable (gains made on the Mathematics subtest 

and gains made on the computation and numerical estimation subtest). The predictor 

variables in both analyses were the number of Kumon worksheets completed and pretest 

score on the respective CAT-3 subtest.  

Summary of Method 

The current study had a nonexperimental research design. Forty two children met the 

eligibility criteria for participation in the study and were given parental consent to 

participate. Students completed the CAT-3 Mathematics subtest, the CAT-3 computation 

and numerical estimation subtest, and the CCAT Verbal subtests at the time of pretesting. 

Six months later, at posttesting, children were re-administered the CAT-3 subtests. The 

number of Kumon Math worksheets completed between pre- and posttesting was also 

recorded for each participant. T-tests, ANOVAs and multiple regression were used to 
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answer the study’s research questions. Chapter four presents the results from these 

statistical analyses.  
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CHAPTER IV: RESULTS 

Chapter four presents the research findings of the current study. First, the descriptive 

statistics for the pre- and posttest samples are presented. Next, the results of the statistical 

analyses are presented for each of the study’s four hypotheses; each hypothesis is restated 

and followed by all relevant statistical findings. PASW Statistics GradPack version 18.0 

computer software was used for all statistical analyses. 

Sample at Pretesting 

The sample at the time of pretesting consisted of 17 males and 25 females. Nine of 

the participants were in grade 4, 15 were in grade 5, and 18 were in grade 6. Participants’ 

ages ranged from nine years, two months to 12 years, one month. The majority of 

participants (30 students) in the sample were enrolled in the Kumon Math programme, 

while twelve students were enrolled in both the Math and Reading programmes.  

All but one participant, who was in the gifted range, fell in the average range on the 

measure of cognitive ability. On the measure of mathematical achievement, 12 

participants were in the below average range, 23 in the average range, six in the above 

average range, and one participant was in the “gifted” range (this is the same participant 

who was in the above average range on the CCAT). See Table 9 for a summary of the 

descriptive statistics for the pretesting sample.  

Sample at Posttesting 

There was an extremely high attrition rate in this study. Over a six-month period, 

50% of participants dropped out of Kumon. Instructors reported various reasons for 

participants leaving Kumon, such as parents having to refocus their financial and/or time 

commitments. Other students left Kumon in June for summer break and never returned in 
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September. The two groups (students who remained in Kumon versus students who left 

Kumon) were compared based on their pretest variables to determine if there are any 

group differences.  

Analysis for Group Differences 

Independent samples t-tests revealed that there are no significant differences between 

the two groups (students who stayed in Kumon versus students who quit Kumon mid-

study) in terms of pretest CAT-3 scores. More specifically, pretest mathematical 

reasoning scores are not significantly different between children who stayed in the 

programme (M = 510, SD = 86) and children who left the programme (M = 487 SD = 57), 

t(40) = 1.02, p = .32. Pretest numerical operation scores are not significantly different 

either [children who stayed in the programme (M = 492, SD = 82); children who left the 

programme (M = 479, SD = 51); t(40) = .58, p = .56]. Last, the difference between groups 

when total Mathematics scores are compared is not significant [children who stayed in 

the programme (M = 501, SD = 77); children who left the programme (M = 483, SD = 

48); t(40) = .88, p = .38]. There are no significant group differences when CCAT scores 

are compared either [children who stayed in the programme (M = 104, SD = 17); children 

who left the programme (M = 96, SD = 13); t(40) = 1.52, p = .14]. 

Chi-square tests were used to determine if the children who stayed in the programme 

and children who left the programme differed significantly in terms of grade, sex, and/or 

Kumon programme (enrollment in Math only versus enrollment in both Math and 

Reading). Results indicate that the two groups do not differ from each other significantly 

on any of these variables (see Table 10). 
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Sample at Posttesting 

The final sample consisted of 11 males and 11 females. Five of the participants were 

in grade 4, eight were in grade 5, and nine were in grade 6. The youngest participant in 

this sample was nine years, two months old at the time of pretesting, and the oldest 

student was 12 years old, one month at pretesting. The majority of participants (18 

students) were enrolled only the Kumon Math programme while four students were 

enrolled in both the Math and Reading programmes. There were six participants in the 

below average achievement group, 10 in the average group, five in the above average 

group, and there was one participant in the “gifted” group. See Table 11 for a summary of 

the descriptive statistics for the final sample. 

Statistical Analyses 

Hypothesis One: Gender Differences in Mathematical Ability 

An independent samples t-test was used to test the null hypothesis that there are no 

significant differences between males and females in terms of mathematical or cognitive 

ability. The results suggest that there are no significant differences between the two 

groups for any of the variables investigated (see Table 12) and that the null hypothesis 

should be accepted. 

Hypothesis Two: Children of Varying Mathematical Ability 

The “gifted” group was excluded from analysis for two reasons. First, the CAT-3 

does not have a high enough ceiling to accurately capture gains made by students who 

had a high number of correct responses at pretesting. Second, there was only one case in 

this group.  
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The null hypothesis is that there are no significant differences between achievement 

groups in terms of gains made in Mathematics over a six-month period. ANOVA results 

suggest that the CAT-3 scores are not significantly different among achievement groups 

(Table 13). However, the difference among achievement groups on the CAT-3 total Math 

subtest approaches significance. 

Descriptive statistics show a notable trend in gains made on the computation and 

numerical estimation subtest (see Table 14). Below average students tend to make greater 

gains in this area than above average students. However, it is also notable that there is 

significant variance (SD = 78) in above average students’ gains made in computation and 

numerical estimation. The null hypothesis is accepted. 

Kumon Worksheets Completed 

A one-way ANOVA was used to test the hypothesis that there would be differences 

among achievement groups in the number of Kumon levels advanced over a six-month 

period. The null hypothesis is that there is no difference in the number of worksheets 

completed among achievement groups.  

Descriptive statistics suggest that there is a minor trend toward below average 

students completing the fewest and above average students completing the greatest 

number of worksheets (see Table 15). However, the ANOVA results indicate that the 

number of levels advanced in the Kumon programme is not significantly different among 

achievement groups, F(2, 18) = .181, p > .05. The null hypothesis is accepted. 

Hypothesis Three: Kumon Mathematics Programme 

A paired samples t-test was used to determine if the gains made by all participants in 

mathematical reasoning are significantly different from the gains students made in their 
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computation and numerical estimation skills. The null hypothesis is that there is no 

significant difference between the gains made in the two domains of Mathematics. 

Descriptive statistics suggest that there is a trend towards students demonstrating 

greater gains in computation skills than mathematical reasoning skills (see Table 16). 

These results also show that there is a lot of variance in the results (wide range of gains 

made in both subtests and large SDs). The paired samples t-test results indicate that the 

difference between gains made in the two domains of Mathematics is not significant, 

t(20) = -1.660, p > .05. Thus, the null hypothesis is accepted.  

Hypothesis Four: The Relationship between Kumon and Achievement in Mathematics 

Multiple regression was used to investigate how the number of Kumon levels 

advanced, pretest CAT-3 scores, and pretest CCAT scores are related to gains made in 

Math skills. The null hypothesis is that none of these variables significantly predict gains 

made in Mathematics. Grade, age, and sex were not investigated as predictor variables 

due to the small sample size.  

 Analyses were conducted to determine the strength of the relationships between the 

predictor variables and the criterion variables. Three multiple regression analyses were 

completed, one for each criterion variable: gains made in mathematical reasoning, gains 

made in computation and numerical estimation, and gains made in total Mathematics (see 

Tables 17-19).  

Mathematical Reasoning   

 Results indicate that the neither the number of Kumon levels advanced, t(17) = -.170, 

p > .05, CAT-3 pretest scores, t(17) = .147, p > .05, nor scores on the measure of 

cognitive ability, t(17) = -1.425, p > .05, are reliable predictors of gains made in 
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mathematical reasoning. Even together, these predictor variables to not explain much of 

the variance in the predictor variable (adjusted R square = .057). The null hypothesis is 

accepted. 

Computation and Numerical Estimation  

 The number of Kumon levels advanced, t(17) = 2.077, p = .053, is not a statistically 

significant predictor of gains made in computation and numerical estimation skills; 

however, it is extremely close to reaching significance. CAT-3 pretest scores on the 

computation and numerical estimation subtest are significant predictors of gains made in 

the same subtest, t(17) = -3.206, p < .01. Cognitive ability scores, in contrast, are not 

significant predictors of gains made in computation and numerical estimation, t(17) = 

.727,  p > .05. This model explains about one-third of the variance in gains made in 

computation and numerical estimation (adjusted R square = .340). The null hypothesis is 

rejected in this case. 

Total Mathematics 

 Results suggest that the number of Kumon levels advanced, t(17) = 1.288, p > .05, 

CAT-3 total Math pretest scores, t(17) = -.907, p > .05, and CCAT scores, t(17) = -.506, p 

> .05, are not significant predictors of gains made in total Mathematics. Thus, the 

alternate hypothesis is accepted. Overall, this model does not explain very much variance 

in the gains made in total Math (adjusted R square = .087).  

Summary of Results 

The sample at the time of posttesting was considerably smaller than the original 

sample. Statistical analyses were conducted to determine if there were any differences 
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between children who stayed in the Kumon Math programme and children who left. No 

differences were found in any of the variables investigated. 

The results of the current study suggest that there is no significant difference between 

males and females (in grades 4-6) in terms of mathematical or cognitive ability. This is 

true before and after participating in the Kumon Math programme for six months.  

Statistical analysis also suggested that there is no significant difference in gains made 

in Mathematics after participating in the Kumon Math programme among children of 

varying abilities. However, there is a trend that suggests that children who fall in the 

below average group make greater gains in computation skills than children who fall in 

the above average group.  

There was no significant difference in the number of Kumon worksheets completed 

among children of varying abilities. There was a weak trend, though, that suggested that 

below average students may complete the fewest number of sheets while above average 

children complete the greatest number. 

The current results suggest that there is no significant difference in gains made in 

computation versus mathematical reasoning skills after six months of participation in the 

Kumon Math programme. The mean for gains made in computation skills is greater than 

the mean gains made in mathematical reasoning, but the difference is not statistically 

significant. 

Last, statistical analysis was used to investigate the relationship between gains made 

in Mathematics and several predictor variables (number of Kumon worksheets 

completed, pretest Math scores, and cognitive ability scores). None of the variables 

investigated are significant predictors of gains made in mathematical reasoning or total 
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Mathematics. In contrast, the number of Kumon worksheets completed approaches 

significance as a predictor of gains made in computation skills. There is a significant, 

negative relationship between pretest computation scores and gains made in computation 

skills. Cognitive ability scores do not significantly predict gains made in computation 

skills. 

These results are interpreted in the chapter that follows. Limitations, such as the small 

final sample size, will not only be discussed in chapter five, but also incorporated into the 

interpretation of chapter four’s results. 
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CHAPTER V: DISCUSSION 

Chapter five discusses the results of the current study. First is a summary of the 

study’s research problem and method, followed by an interpretation of each important 

result noted in chapter four, a discussion on the limitations of the current study, and 

implications of the study’s findings for current practice. Last is a section containing 

suggestions for future research.  

Summary of Research Problem and Method 

The research question of the current study was formulated after a review of the 

current literature and discovery of a gap in the scientific knowledge base of effective 

Mathematics remedial and enrichment programmes for children. Kumon was selected as 

the programme for investigation because it is widely used, yet has hardly been evaluated 

scientifically. 

An experimental design is needed to determine if Kumon’s Math programme is 

effective. The resources needed to conduct such an experiment were not available, thus 

the research problem became: what is the relationship between participation in the 

Kumon Mathematics programme and achievement in Mathematics for children of 

varying ability? Children in grades 4-6 were administered a measure of mathematical 

achievement and cognitive ability when they first started the Kumon Math programme. 

Six months later, children were re-administered the same measure of mathematical ability 

and information was gathered on the number of Kumon worksheets the child completed 

between pre- and posttesting. Statistical analyses were used to answer the research 

question and to test the study’s null hypotheses. 
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Interpretation of Results 

Sample 

The results from statistical analyses suggest that the group of children who quit 

Kumon over the course of the study and the group of children who remained in Kumon 

are not different from each other in terms of pretest scores in Mathematics, cognitive 

ability, grade, sex, or whether they were enrolled in Kumon Math or Kumon Math and 

Reading. The final sample size was small (22 participants), but since the final sample is 

not distinguishable from the considerably larger initial sample (43 participants) on any 

major variables investigated, one can have greater confidence that the final sample is 

representative of the target population. 

Still, it is possible that the final sample is different from the original sample on some 

unmeasured variable(s). For example, parental income and education likely influence the 

length of time that a child spends in Kumon. These variables could also influence a 

child’s achievement in Mathematics.  

Hypothesis One: Gender Differences in Mathematical Ability 

The first null hypothesis was that there would be no significant differences in 

mathematical ability or achievement between male and female participants. The null 

hypothesis was accepted; there are no significant differences between the genders in 

terms of CAT-3 scores (pretest, posttest, or gains made in mathematical reasoning, 

computation and numerical estimation, or total Math), CCAT Standard Age scores, or 

number of Kumon worksheets completed. 

These results are consistent with past findings that gender differences in mathematical 

ability are small and insignificant (Bjorklund, 2005; Georgiou et al., 2007; Hedges & 
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Nowell, 1995; Hyde et al., 1990; Leahey & Guo, 2001; Maccoby & Jacklin, 1974). When 

mathematical ability is separated into subskills, some researchers have found that females 

have stronger computation skills than males (Hyde et al., 1990). These results were not 

replicated in the current study; there was no difference in pretest, posttest, or gains made 

in computation skills between males and females. However, it is important to keep in 

mind that the sub-sample sizes were quite small (11 males and 11 females). Thus, the 

results of the current study may not reflect the true abilities of grade 4-6 males and/or 

females. 

Researchers have also found that there are differences in the number of males and 

females at the upper extremes of mathematical ability. In the current study both of the 

participants who scored above the 95th percentile in total Mathematics were males. 

Again, generalizations to the target population must be made with caution due to the 

small sample and sub-sample sizes. However, the trend found in the current study is 

consistent with past research. 

Hypothesis Two: Children of Varying Mathematical Ability 

It was predicted that students who demonstrate above average and “gifted” level 

achievement in Mathematics upon entering the Kumon Math programme will accelerate 

at a faster pace than average and below average children because of the qualitative and/or 

quantitative differences in their abilities. More specifically, it was predicted that because 

gifted children are quicker at solving problems, have more elaborate procedural 

knowledge, are more flexible in using strategies, and are more sophisticated in meta-

cognition (Threlfall & Hargreaves, 2008), they will gain more from the Kumon 

programme and accelerate through its’ levels at a faster rate.  
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In a related vein, it was predicted that children in the below average group will 

advance at the slowest rate in the Kumon programme because of their qualitative and/or 

quantitative differences in their ability to learn Mathematics. Difficulties at each stage in 

the learning hierarchy and psychological processing deficits were expected to slow their 

rate of growth in the Kumon Math programme.  

Surprisingly, the null hypothesis was accepted. Statistical analysis reveals that there is 

no significant difference in gains made in Mathematics among achievement groups 

(below average, average, and above average). These results may suggest that rate of 

growth Mathematics while participating in the Kumon Math programme is not influenced 

by the child’s mathematical ability at the time of entering the programme; children of 

varying abilities progress at the same rate in Kumon. 

However, trends within the results and past research suggest alternative explanations. 

First, there was a strong trend in the results toward below average students demonstrating 

greater gains in computation skills than above average students. This trend may reflect a 

ceiling effect on the CAT-3. Above average children may not be able to demonstrate the 

magnitude of their growth in Mathematics via the CAT-3. All children are administered 

the same number of questions on the CAT-3 subtests, unlike on individually administered 

tests, where the number of questions administered is adjusted based on the individual’s 

performance. As such, children who had a higher percentage of correct responses at 

pretesting had a smaller window to demonstrate growth than children who initially scored 

in the lower ranges.  

Still, the difference among achievement groups was not statistically significant, 

contrary to what was predicted based on a literature review. Perhaps the effect of pre-
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intervention ability is masked by the small sample size and even smaller sub-group 

(below average, average, above average) sample sizes. As a result, the mean scores may 

not be representative of the target population.  

The criteria used to classify children into achievement groups may not be appropriate. 

Percentile rankings on the Total Mathematics subtest were used to categorize 

participants. This subtest’s percentile rankings are determined based on the individual’s 

scores on the Mathematics and the Computation and Numerical Estimation subtests, and 

is not a subtest in itself. If a large discrepancy exists between an individual’s Math and 

computation scores, his or her total Mathematics percentile ranking may not accurately 

reflect his or her overall mathematical ability. In this case, total Math percentile ranking 

may not be an appropriate measure to categorize the participant into an achievement 

group.  

In addition, the percentile ranking ranges outlined to categorize students may not 

accurately define achievement groups. The literature review conducted in the current 

study revealed extremely inconsistent cutoff criteria among researchers and practitioners 

for identifying below average and gifted children. The cutoff ranking for Mathematics 

Disorder varies between the 8th and 48th percentile (Swanson & Jerman, 2006) and 

criteria for identifying gifted children fluctuates by approximately 10 percentile rankings. 

The ranges selected for use in the current study were made based on the most frequently 

used ranges found in the literature search, but may not capture the true ranges that define 

achievement groups. 

Last, statistical analysis may have revealed insignificant differences among 

achievement groups because the relationship between gains made in Mathematics and 
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pretest ability (below average, average, or above average) is influence by additional 

variables. Multiple regression was used to analyze the relationship between gains made in 

Mathematics and several predictor variables (see Hypothesis four: The relationship 

between Kumon and achievement in Mathematics).  

Kumon Worksheets Completed 

Based on the same literature review on the qualitative and quantitative differences 

between below average, average, above average, and gifted children, it was predicted that 

there would be a significant difference in the number of worksheets completed in the 

Kumon Math programme between achievement groups. Above average students were 

expected to complete the greatest number of worksheets and below average students were 

expected to complete the fewest. 

Statistical analysis led to acceptance of the null hypothesis. The number of 

worksheets completed by students was not significantly different across achievement 

groups (below average, average, and above average). This could suggest that the rate of 

advancement in Kumon is independent of the child’s abilities at the time of entering the 

programme. 

The accuracy of interpretations based on this study’s results is tempered by the small 

sample size of the current study. There are only a few cases in each achievement group, 

reducing the likelihood that the obtained results reflect the results of the general 

population.  

The results may be contrary to what was predicted because the classification criteria 

used to define achievement groups are invalid. Another possible explanation for the 

unexpected findings is that there may be extraneous variables influencing children’s rate 
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of worksheet completion. For example, number of worksheets completed is likely 

influenced by student motivation and parent encouragement.  

Another factor to consider is that there is subjectivity in determining mastery of a 

worksheet. Kumon has set objective criteria for evaluating mastery of worksheets, but 

instructors are permitted to use subjective judgment in determining whether or not a child 

should advance to the next worksheet. In other words, instructor variables influence the 

number of worksheets completed. If there is a lot of variability in ‘mastery criteria’ 

between instructors, achievement group differences may have been obscured. Therefore, 

the results in this section may best be interpreted as evidence that unmeasured variables 

(such as student motivation or instructor differences) are stronger predictors of the 

number of Kumon worksheets completed than pretest achievement scores or that certain 

variables must be considered in tandem to explain the number of worksheets completed 

by a Kumon student.  

Hypothesis Three: Kumon Mathematics Programme 

The vast majority of Kumon’s Math worksheets focus on computation skills and only 

a few questions specifically exercise mathematical reasoning skills. As such, it was 

predicted that Kumon would have a differential effect on Mathematics skills; children 

will make significantly greater gains in computation skills than mathematical reasoning 

skills. The results of the current study show the difference is not significant. One 

interpretation of these results is that Kumon has an equal effect on both types of Math 

skill. 

The computation skills that are exercised in Kumon worksheets may be generalizing 

to mathematical reasoning skills. Although the computation skills needed to succeed on 
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the Math reasoning subtest are more basic than those required on the numerical 

computation subtest (for example, single-digit addition versus multiple-digit addition), 

computation skills are needed nonetheless.  

 Kumon students begin the programme at a low start point (a level that would 

correspond to several grade levels below their current scholastic grade level). As a result, 

students work on lower level computation skills for the first few months after enrolling in 

Kumon. The basic computation skills needed to excel on the Math reasoning subtest are 

thus practiced repeatedly and mastered in the first few months of the child’s participation 

in the Kumon Math programme. The more advanced computation skills (such as those 

needed to succeed on the computation subtest) are targeted only after lower level skills 

are mastered. In summary, gains made in the two areas may be comparable because in a 

six month period, the child spends more time practicing lower level skills than higher 

level skills and thus is at different levels in the learning hierarchy. Basic computation 

skills are practiced repeatedly in the first six months and thus may have reached the 

mastery level. As such, students can generalize and adapt their skills to solve Math 

reasoning problems. Higher level computation skills are practiced less, and thus may only 

be in the fluency or even acquisition stage at the time of posttesting.  

Alternatively, the comparable gains in both domains of Mathematics could reflect 

development in an overarching skill. Kumon states that its’ programmes develop not only 

Math and Reading, but concentration, study habits, and self- confidence (Izumi, 2001; 

KNA, 2008). Information-processing theory suggests that psychological processes, such 

as attention and concentration, support and enhance the transfer of information to long-

term memory (Hetherington et al., 2005). Therefore, participation in the Kumon Math 



90 

 

programme may lead to equal growth in computation and mathematical reasoning skills 

as a result of strengthened psychological processing skills.  

McKenna and colleagues’ (2005) also found that the Kumon group had significantly 

higher test scores than the non-Kumon group on measures of both mathematical concepts 

(computation) and problem solving (mathematical reasoning). The following year, 

retention effects were measured and again the difference between experimental and 

control groups was significant for both mathematical procedures (computation) and 

problem solving (mathematical reasoning) (McKenna et al., 2005). Therefore, Kumon 

may have a significant, positive, and comparable effect on both Math reasoning and 

computation skills. 

Descriptive statistics of gains made in computation and Math reasoning skills also 

yielded notable results. The range of gains made shows that some students scored lower 

at posttesting than pretesting. Four participants demonstrated deficits in mathematical 

reasoning and three students demonstrated deficits in computation and numerical 

estimation.  

One interpretation of these results is that some students regress in their mathematical 

achievement after participating in Kumon. It isn’t likely that students would actually lose 

Math skills, as long as practice is relatively consistent (as is mandated by the Kumon 

programme). Instead, it could be that students’ performance on a measure of 

mathematical ability is compromised. 

Speed is a main goal in the Kumon programme and this is emphasized by instructors 

and in Kumon’s evaluation of student progress. Perhaps some participants sacrificed 

accuracy for speed at posttesting. At pretesting, 21% of students were not able to 



91 

 

complete the subtests (answer every question in the allotted time). At posttesting, only 

one participant did not finish before the time expired (5% of the final sample). This 

suggests that students are working more quickly on Math problems after participating in 

the programme for six months. 

However, it is not likely that Kumon students learned to value speed over accuracy, 

as accuracy and speed are emphasized equally in the evaluation of worksheets and 

achievement tests. This may highlight a theoretical flaw in the Kumon philosophy, and 

thus why most of the null hypotheses of this study have been accepted thus far.  

Behavioural psychologists believe that skills are acquired by systematically 

progressing through the learning hierarchy: acquisition, fluency, generalization, and then 

adaptation (Daly & Martens, 1994; Haring et al., 1978). Kumon’s intervention starts at 

the fluency level, expecting students to master accuracy and speed simultaneously. 

According to behavioural psychology, if instruction does not follow the learning 

hierarchy, the student’s foundation will be shaky and the skill will not be mastered. This 

could explain why some participants demonstrated limited growth and others even 

demonstrated negative growth. 

Still, many students demonstrated considerable, positive gains in both types of Math 

skills. Negative and small gains made may be attributable to problems with the measure 

used to assess mathematical ability. Two of the five students who demonstrated skill 

deficits were fell in the above average achievement group based on their pretest scores. 

This means that these students had a smaller window to demonstrate growth at 

posttesting on the CAT-3. However, one would expect these students to score at least as 

high as they did at pretesting. It is possible that some students’ pretest scores were on the 
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positive side of the standard error of measurement from their true score while their 

posttest score is on the negative side. This could result in a negative growth score. 

There are two other alternative interpretations for the finding that there is no 

significant difference between gains made in the computation and mathematical 

reasoning domains. First, this study has a small sample size and thus all interpretations 

should be tentative. With a larger sample, the mean gains made scores may shift and the 

difference between means come become significant. Second, there could be extraneous 

variables influencing children’s gains made in mathematical reasoning and computation 

skills or certain variables could be interacting, having a complex effect on gains made. 

These relationships are not accounted for in a paired samples t-test.  

Hypothesis Four: The Relationship between Kumon and Achievement in Mathematics 

Mathematical Reasoning 

 The results from multiple regression analysis suggest that gains in mathematical 

reasoning cannot be predicted by the number of Kumon worksheets completed, pretest 

Math reasoning scores, or cognitive ability. These findings are consistent with what was 

predicted. Since Kumon Math worksheets are composed almost entirely of computation 

exercises, it was expected that children would not make significant gains in mathematical 

reasoning as a result of participating in Kumon. In other words, the number of worksheets 

students completed or their mathematical or cognitive abilities at the time of entering the 

programme can not be used to predict growth in the area of mathematical reasoning 

because Math reasoning is not specifically exercised by the Kumon programme. 

Alternative explanations for these null findings follow in the sections below (see 

“Computation and numerical estimation”). 
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Computation and Numerical Estimation 

A separate multiple regression analysis reveals that the number of Kumon worksheets 

completed has a strong (but not statistically significant) relationship with gains made in 

computation and numerical estimation. There is a significant relationship between gains 

made in computation skills and pretest scores in the same domain. Contrary to what was 

predicted, children’s computation skills at the time of beginning Kumon and gains made 

after six months in the programme are inversely related.  

Number of Kumon worksheets completed. Although the number of Kumon 

worksheets completed is not a statistically significant predictor of gains made in 

computation skills, there is a strong relationship between these variables. These results 

could suggest that the more Kumon worksheets a child completes, the greater his or her 

gains will be in computation skills.  

Support for this interpretation comes from a comparison of the relationship between 

number of Kumon worksheets completed and gains made in the two domains of Math 

skill measured. Multiple regression analyses show that the number of Kumon worksheets 

completed has a stronger relationship with gains made in computation skills than gains 

made in Math reasoning skills. This is consistent with the fact that Kumon worksheets 

target computation skills more so then they target Math reasoning/problem solving skills. 

However, all interpretations of these results must be conservative at this point in the 

research as the relationship between worksheets completed and gains made in the 

computation domain is not statistically significant and also because there are many 

limitations to this study, such as having a small sample size (see “Limitations”). 



94 

 

Last, it is important to note that the relationship between the number of worksheets 

completed and gains made in computation skills is influenced by the individual’s 

computation skills at the time of entering Kumon. In fact, thirty percent more of the 

variance in gains made on the computation subtest is accounted for when pretest 

computation scores are included in the multiple regression analysis. In contrast, pretest 

Math reasoning scores only explain an additional 5% of the variance in gains made on the 

Math reasoning subtest. In sum, these results may suggest that the relationship between 

Kumon and achievement in Mathematics is complex and influenced by numerous 

variables. One such variable may be mathematical ability at the time of enrolling in the 

Kumon programme. 

Pretest mathematical ability. There is a statistically significant relationship between 

pretest computation scores and gains made in the same subtest, as was predicted. 

However, the relationship between pretest scores and gains made in computation skills is 

not in the predicted direction. The results of the current study suggest that children with 

lower scores at pretesting make greater gains in computation skills than children with 

stronger skills at the time of pretesting.  

Below average students tend to have more difficulties in all stages of the learning 

hierarchy (quantitative differences) and weaker processing abilities (qualitative 

differences) than average and above average students (Augustyniak et al., 2008; Daly & 

Martens, 1994; Haring et al., 1978; Shalev, 2004; Stroving & Rourke, 1985). As such, it 

was hypothesized that below average students would demonstrate the smallest gains 

(when compared to average and above average students) in Math skills following six 

months of participating in the Kumon Math programme. The results of this study may 
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suggest the opposite; students who enter the Kumon Math programme with weaker 

computation abilities gain more computation skills than students who enter the 

programme with higher scores. Perhaps the Kumon Method of Learning appeals more 

and/or is better suited to below average students than average or above average students.  

One of the components of the Kumon Method of Learning is that students begin at a 

low starting point so that initial work is easily completed (KNA, 2008). This may appeal 

more to struggling students than students looking for enrichment. Struggling Math 

students have had fewer successes in Mathematics and as such may be more reluctant to 

work on Math problems. These experiences of early success in the Kumon Math 

programme may be more meaningful to below average students, resulting in greater self-

confidence and confidence in the programme’s effectiveness.  

In contrast, above average students prefer complex, challenging problems (Threlfall 

& Hargreaves, 2008). These students may become disinterested and lose confidence in 

the programme’s usefulness in the first few weeks of the programme. Ma (2005) suggests 

that an under-stimulating Math curriculum will lead to loss of motivation and under-

achievement among talented Math students. Perhaps the comfortable starting point in the 

Kumon programme is advantageous to below average students but hinders above average 

students’ achievement. 

The Kumon Method of Learning may also have a differential effect on students’ 

achievement because the programme’s strategies better address the needs of below 

average students than those of advanced students. For example, below average students, 

specifically students with a MD, tend to have memory deficits (Geary, 1993; Geary & 

Hoard, 2001; Ginsburg, 1997; Jordan & Montani, 1997; Shalev & Gross-Tsur, 2001). 
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These students’ memory deficits may be remediated by the repeated, daily practice that is 

central to the Kumon programme. Also, students often struggle in Mathematics because 

of difficulties in organizing mathematical information spatially (Augustyniak et al., 2005; 

Geary, 2003; Strang & Rourke, 1985). Kumon worksheets are highly structured both in 

content and spatial organization so that students can progress incrementally and 

independently (Izumi, 2001). This likely helps below average students improve their 

performance in Mathematics.  

Further, Mills and colleagues (1994) evaluated the effectiveness of a Math 

programme comprised of strategies similar to those that are central to Kumon’s Method 

of Learning for children who demonstrated giftedness in Mathematics. The strategies 

employed include a linear curriculum, individualized learning, and instructional 

placement based on the child’s level at the time of entering the programme (Mills et al., 

1994). Participants demonstrated greater gains in Mathematics than controls (Mills et al., 

1994). This is further support for the hypothesis that Kumon’s strategies are effective 

teaching techniques for children who are at an above average level in Mathematics. 

Despite the many specific, positive effects that the Kumon programme may hold for 

below average students, there is not enough evidence to conclude that the Kumon Method 

of Learning is more beneficial to below average students than average or above average 

students or further that Kumon’s Method of Learning  hinders the mathematical 

achievement of above average students. With the exception of a low starting point, the 

aforementioned Kumon strategies that help below average students (repeated practice, 

well-organized curriculum, and independent learning) would most likely enhance all 

children’s development in Mathematics. At the very least, these strategies are not likely 
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detrimental to above average students’ learning. An alternative explanation for the 

negative relationship between pretest scores and gains made is more likely. 

Gains made by below average students could be superficially greater than gains made 

by average and above average students because of the structure of the CAT-3. Both the 

Mathematics and the computation and numerical estimation subtests have a set number of 

questions (40 and 26, respectively). As such, the ceiling for this measure is determined by 

the number of questions and not the students’ abilities for high achieving students.  

To determine the gains a student made in either subtest, pretest scale scores were 

subtracted from posttest scale scores. Scale scores are determined based on the number of 

correct responses the individual made within the subtest. This means that participants 

who had a high percentage of correct responses at pretesting were more restricted in their 

ability to demonstrate gains than students who initially had a lower percentage of correct 

responses. This could explain why multiple regression shows a negative relationship 

between pretest scores and gains made in computation skills. 

However, the negative relationship between pretest scores and gains made only exists 

for computation skills (the relationship between pretest scores and gains made in 

mathematical reasoning is insignificant). This could be due to differences in the structure 

of the two subtests.  

The CAT-3 Norms Book states that scale scores “are comparable across test levels 

(but not across tests, e.g., Reading and Mathematics)” (Canadian Test Centre, 2001, p. 1). 

The Norms Book does not explicitly state whether comparisons can be drawn between 

subtests that measure different domains of the same skill (computation and mathematical 

reasoning skills).  
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Examination of the CAT-3 subtests and norms reveals that the same number of 

correct responses on the computation subtest and the Math reasoning subtest corresponds 

with different scale scores, with number of correct responses corresponding to higher 

scale scores on the computation subtest. In other words, if a grade four student answers 

15 more questions correctly at posttesting than he/she did at pretesting on both subtests, 

his/her gains made score would be greater in the computation and numerical estimation 

domain than it would be in the mathematical reasoning domain. However, statistical 

analysis is required to determine if this difference is significant and thus would make 

gains made in the Math reasoning and computation domains not directly comparable. 

Rather, they would be attributable to the structure of the mathematical achievement 

measure administered.  

Alternatively, there may be differences in the relationship between gains made and 

pretest scores for the two domains of Math skills because of the influence of one more 

other variables. These other variables may affect gains made in computation skills more 

than gains made in mathematical reasoning skills. In fact, multiple regression shows that 

many predictor variables are needed to account for the variance in the criterion variables 

(gains made in computation and Math reasoning).  

One of the variables influencing the relationship between gains made in computation 

skills and pretest computation scores is the number of Kumon worksheets completed by 

the student. Multiple regression shows that pretest computation scores explain 24.6% of 

the variance in gains made in computation skills. Adding the number of Kumon 

worksheets completed to this model accounts for nine percent more of the variance. In 

contrast, adding the number of Kumon worksheets completed to the mathematical 



99 

 

reasoning model does not help explain any additional variance. This may suggest that 

Kumon’s relationship with achievement in computation skills is stronger than its 

relationship with growth in mathematical reasoning skills. 

Still, approximately two-thirds of the variance in gains made in computation skills 

(and even more of the variance in gains made in Math reasoning) has yet to be explained. 

There are other, unmeasured variables influencing children’s gains in both mathematical 

reasoning and computation. 

In sum, the most plausible explanation, in the current author’s opinion, for the finding 

that the relationship between pretest computation scores and gains made in computation 

skills is negative is that the results were skewed by limitations of the CAT-3. The 

structure of the CAT-3, specifically the ceiling on the CAT-3, limits above average 

students in their ability to demonstrate growth. Above average students are more limited 

in their ability to demonstrate gains made on the computation subtest versus the 

mathematical reasoning subtest because the former has significantly fewer questions.  

Cognitive ability. It was hypothesized that children with higher cognitive ability 

scores at the time of pretesting would demonstrate greater gains in Math skills than 

children who scored in the lower ranges on the cognitive measure. Results indicate that 

cognitive ability scores do not significantly predict gains made in computation and 

numerical estimation or mathematical reasoning. This could suggest that a child’s 

cognitive ability does not influence his or her ability to achieve in the Kumon Math 

programme. 

Another explanation for these results is that children with high or above average 

cognitive abilities are restricted in their ability to achieve in Mathematics by the structure 
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of the Kumon programme. It is possible that the programme progresses so gradually that 

advanced children are under-stimulated and lose motivation, resulting in under-

achievement (Ma, 2005).  

In the current author’s opinion, this is not the most plausible explanation because 

individualized learning and advanced study are two of the main strategies behind 

Kumon’s programme (Izumi, 2001; KNA, 2008). The pace of progression is dictated by 

the individual student’s abilities and all students are encouraged to reach their highest 

potential as quickly as possible (Izumi, 2001; KNA, 2008).  

Children’s scores on the Verbal section of the CCAT have been used by past 

researchers as the measure of cognitive ability because of its high correlation with the 

Henmon-Nelson (Schneider et al., 1989). The Verbal section of the CCAT has also been 

selected in the past as a measure of the cognitive ability because the skills measured are 

those most closely related to the abilities needed to achieve academically. Thus, the 

CCAT likely provides an appropriate measure of cognitive ability. 

The literature clearly states that cognitive ability and the ability to achieve in 

Mathematics are positively correlated. Therefore, it is more likely that the null findings of 

the current study reflect a limitation of the study. Specifically, the results likely reflect the 

study’s small sample size. In the pretest sample of 42 participants, only one participant 

fell outside the average range of cognitive ability. This lack of variance in the sample 

supports the claim that the study’s sample was not representative of the general 

population. The lack of variance in the pretest sample could be due to non-random 

sampling; perhaps children of below and above average intelligence do not typically 

enroll in Kumon. However, the sample used to measure the relationship between 
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cognitive ability scores and gains made in Mathematics consisted of only 22 participants. 

It is unlikely that this small sample is representative of the general population in terms of 

cognitive ability. 

Total Mathematics   

Total Mathematics is a composite score derived from averaging an individual’s scores 

on the Mathematics subtest and his or her scores on the computation and numerical 

estimation subtest. As such, multiple regression analysis of the relationship between 

gains made in total Math and the three predictor variables (number of Kumon worksheets 

completed, pretest total Math scores, cognitive ability scores) provides an addition 

measure of the strength of the relationship between participation in Kumon and 

achievement in Mathematics. 

It was hypothesized that the gains made in computation skills would be so great in 

magnitude as a result of participating in Kumon that gains made in total Math would also 

have a significant, positive relationship with the number of Kumon worksheets 

completed. Multiple regression shows that there are no relationships between gains made 

in total Math and any of the predictor variables. This is consistent with the earlier finding 

that the relationship between gains made in computation skills and participation in 

Kumon is not statistically significant.  

Limitations 

 The current study has many limitations. Specifically, there are notable limitations 

in the study’s sampling procedures, instrumentation, and data collection. 
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Sampling Procedures 

A major limitation of the current study is that it has a non-experimental design. 

Without a control group, cause and effect cannot be determined. For example, all 

significant results may have occurred as a result of maturation. Alternatively, 

relationships between the variables in this study could reflect the fact that participants 

spent extra time studying, and not specifically because they were studying with Kumon 

materials. Also, participants were not randomly assigned to the Kumon group. The 

participants in the current study may therefore represent a subgroup of the general 

population that is different in some way. The children who enroll in Kumon voluntarily 

may come from families that have more money, parents who have achieved higher 

education, parents that are more involved in their children’s academics, etc. All of these 

factors could influence students’ achievement in Mathematics and could have influenced 

the results of this study. Experimentation is needed to determine whether there is a cause 

and effect relationship between children’s participation in Kumon and achievement in 

Mathematics. 

Noted throughout the discussion section is that the study had a small sample size. 

With only 22 participants, statistical analyses do not yield meaningful results. This 

study’s results are not representative of the general population and therefore the results 

are not generalizable to all grade four, five, and six students. As a result, inferences and 

implications cannot be drawn from the current study’s results; statements regarding the 

usefulness of Kumon for children cannot be made at this point in the research. The 

statistical analyses used in the current study were for exploratory purposes only and 

discussion of the study’s results exists to fulfill the requirements of this project.  
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Last, the sample included children enrolled in the Kumon Math programme (18 

participants) as well as children enrolled in the Kumon Math and Reading programmes 

(four participants). Students who are enrolled in both programmes were not excluded as 

this would have further reduced the study’s sample size. This is a potential limitation of 

the study because the sample may not be homogeneous; students involved in an addition 

academic intervention could be at an advantage over students who are only participating 

in Kumon Math. Kumon claims that both of their programmes enhance concentration, 

study habits, and self-confidence (Izumi, 2001; KNA, 2008). If this is true, then 

participation in the Reading programme would enhance students’ ability to learn in 

general, including their ability to achievement in Mathematics. This further limits how 

much gains in Mathematics can be attributed to participation in the Kumon Math 

programme. 

Instrumentation 

The limitations associated with using the CAT-3 as the measure of mathematical 

achievement have been discussed at length. The results of the current study may suggest 

that students were limited in their ability to demonstrate gains made in Mathematics by 

the ceilings of the CAT-3. Another potential limitation of using the CAT-3 as the 

measure of gains made in Mathematics is that there is only one version of the test for 

each level. This could lead to practice effects at posttesting and artificially greater scale 

score differences.  

The Verbal section of the CCAT is best used as a screener for cognitive ability as it 

does not capture all domains of intelligence and as a group administered test, the ceiling 

is determined by the number of questions and not each individual’s ability. An 
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individually administered measure of cognitive ability, such as the Weschler Intelligence 

Scale for Children, Fourth Edition (WISC-IV), would provide a more accurate estimate 

of participants’ cognitive ability. 

There are also limitations in using the number of Kumon worksheets completed as the 

measure of participation in Kumon. The criteria for determining mastery of a worksheet 

are not standardized. Kumon has set guidelines for instructors to follow in evaluating 

worksheets. However, each instructor is permitted and encouraged to use their personal 

judgment to determine whether or not a child is ready to advance to the next worksheet. 

Participants in the current study were recruited from over 15 centres. Across 15 different 

instructors, there is almost certainly at least minor variation in how ‘mastery of a 

worksheet’ is defined. 

Another potential limitation of using the number of Kumon worksheets completed as 

the independent measure is that this measure does not take into account the consistency 

of participation in the programme. Some students completed approximately the same 

number of worksheets each week over the six months in question while others had 

periods of high completion rates and periods of inactivity (for example, some students 

took several weeks off from Kumon in the summer). It is possible that these two 

approaches result in different patterns of development and achievement in Mathematics.  

Data Collection 

Data was collected in the students’ regular Kumon classrooms. This means that at 

times, testing conditions were less than ideal. Noise levels within the classroom 

sometimes escalated and there were a few distractions during testing; for example, people 

talking to the participant while he or she was completing testing. Since these conditions 
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are different from those during standardization of the CAT-3 and CCAT, it may not be 

appropriate to use their norms. This is not considered a major limitation of the study as 

testing conditions were ideal (or very close to ideal) for the majority of testing. 

Vancouver participants’ pre- and posttest data were collected by Vancouver Kumon 

field staff due to logistical restraints. Kumon field staff also helped collect some of the 

pretesting data in the Greater Toronto Area. Toronto field staff members were recruited 

to help administer the CAT-3 and CCAT to reduce the amount of time between 

enrollment and pretesting and to reduce the amount of time between CAT-3 and CCAT 

testing. All field staff were trained by the lead researcher on how to administer these tests 

in a one hour tutorial. Still, all attempts were made to limit the amount of testing 

administered by Kumon staff; tests were only administered by Kumon staff if the lead 

researcher was occupied (administering tests in another location). All posttest data was 

collected by the lead researcher (save for the data from Vancouver centres). Of note, all 

participants who were tested by Kumon field staff at pretesting dropped out of the 

Kumon programme before posttesting.  

Kumon staff may have monetary interest in the results of this study. As such, 

Vancouver field staff may have advertently or inadvertently had a negative influence on 

students’ pretest scores. Students would be more likely to demonstrate significant gains 

in Mathematics if their pretest scores are lower. Post-hoc analysis was conducted to 

determine if there were significant differences between pretest scores collected by 

Kumon staff and pretest scores collected by the independent researcher. There are no 

significant differences between the two groups. However, these two groups contain very 

few cases; with larger subsamples differences may emerge.  
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Instructors were asked to invite all students who enrolled in January and February of 

2009 to participate in this study within one week of their enrolment. Instructors have 

many other priorities and as a result there were often delays in the distribution of consent 

forms. Some parents took an extended time period to return the consent form. Once 

parental consent was received, there was often difficulty reaching instructors to schedule 

pretesting. As a result, the length of time between enrolling in the programme and 

pretesting was often not ideal. The average number of days between enrollment and 

pretesting was 45. This could have affected the results of the current study. Pretesting 

scores may not represent children’s mathematical ability prior to starting Kumon. It is 

possible that children’s Math scores change significantly in the first month of 

participating in Kumon. If so, the pretest scores in the current study do no represent pre-

intervention ability and thus inferences about the relationship between children’s pre-

intervention ability, participation in the Kumon Math programme, and achievement in 

Mathematics cannot be made using this type of data. 

The time period between pre- and posttesting was approximately six months. Students 

may need more than six months of exposure to Kumon in order to demonstrate significant 

gains. However, McKenna and colleagues (2005) found that Kumon students made 

significant improvements in their Math skills after only seven months of receiving the 

intervention. This project’s timeline was approved by a general manager at Kumon 

Canada, who, of course, has interest in ensuring that the research design allows students 

the opportunity to demonstrate any gains incurred as a result of participating in the 

Kumon Math programme. Nonetheless, the timeline for the current study was based more 

on the researcher’s resources than literature stating the recommended length of 
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intervention, as there is no such research. The results of the current study may have been 

different if the time period of the study was longer (or shorter). 

Implications 

 The implications that can be drawn from the current study’s results are extremely 

restricted by the aforementioned limitations. Most notable are the limitations imposed by 

the small sample size of the study. There is a strong likelihood that the results obtained 

from the sample in the current study are different from the results that would have been 

obtained from a larger, more representative sample.   

 The most important and valid implications of this study’s results pertain to 

researchers. This study makes a contribution to the scientific knowledge base in that it 

promotes awareness of the dearth of knowledge in the areas of MD, giftedness in 

Mathematics, and effective remedial and enrichment Math programmes (the Kumon 

Math programme in particular). This study brings to light many areas in need of research. 

Specific questions and suggestions for future research are also noted below. 

 Implications for practitioners and teachers are few as there are so many limitations in 

this study. Ultimately what some practitioners and teachers will gain from this study is 

awareness of a Math intervention that they were previously unaware of and reasons why 

it may or may not be effective based on learning theory. This does not allow them to 

make recommendations to parents seeking enrichment or remedial Math programmes for 

their children, but it allows counsellors and educators to provide parents with a more 

comprehensive understanding of what is available. 
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Questions for Future Research 

The research question in the current study (what is the relationship between 

participation in Kumon and achievement in Mathematics?) needs to be posed again by 

future researchers. Once the limitations of the current study are addressed, researchers 

can find a more definitive answer to this question and thus more valuable implications 

can be drawn for practitioners, teachers, parents, and children. Future researchers should 

use an experimental design and recruit a greater number of participants. More accurate 

measures of achievement and cognitive ability should be utilized if possible. For 

example, future researchers may wish to use individually administered tests as the 

measures of achievement and cognitive ability, such as the Weschler Individual 

Achievement Test, Second Edition (WIAT-II) and the WISC-IV, respectively. The 

researcher should be more involved in participant recruitment to limit reliance on Kumon 

instructors for data collection.  

The majority of variance in gains made in Math skills was unexplained in all multiple 

regression analysis models within this study. Research is needed to determine what other 

variables influence Kumon’s effectiveness and of these variables, which is the most 

influential? How do these variables influence development in Mathematics in general?  

Specifically, researchers should investigate the influence of parental 

education/income/involvement, student motivation, consistency of participation in the 

programme, and instructor variables (teaching skills, philosophy on learning and 

education, demeanor with students). 

It would also be interesting to include measures of psychological processing skills in 

future analyses. How do a child’s psychological processing skills, such as working 
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memory, concentration, and visuo-spatial processing, influence a child’s ability to benefit 

from the Kumon Math programme? Do any of these skills improve as a result of 

participating in Kumon? 

Future research may show that the Kumon programme is not an effective intervention 

for mathematical reasoning skills, computation skills, or both. As such, researchers 

should also pose questions about the effectiveness of other Mathematics programmes. Is 

the KeyMath Teach and Practice an effective remediation programme? Is it an effective 

enrichment programme? Is Lightspan an effective Mathematics intervention for children 

of varying abilities? Is there a difference in the effectiveness of specific teaching 

strategies for children of different mathematical ability? If so, what strategies are the 

most effective for teaching children with MDs, typically developing children, and gifted 

children? 

In sum, there are many gaps in the literature regarding Math interventions for below 

average, average, and above average students. Based on the results from the current study 

and this literature, several research questions have been suggested to orient future 

researchers to the most pressing issues.  

Conclusion 

The purpose of this study was to determine the relationship between participation in 

the Kumon Math programme and achievement in Mathematics for children of varying 

abilities. A nonexperimental, causal comparative research design was employed to 

answer the research question. Results suggest that there may be a stronger relationship 

between participation in Kumon and development in computation skills versus Math 

reasoning skills. Results may also suggest that the relationship between Kumon and 
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achievement in computation skills is stronger for children who start the programme at a 

below average level than children who start at an average or above average level. 

However, there were so many limitations to the study, namely in sampling, 

instrumentation, and data collection, that inferences and implications cannot be drawn 

from the study’s results. The main contribution of the current study then, is to raise 

awareness of the Kumon Math programme and to examine its structure and strategies in 

comparison to learning theory. This study also contributes several questions and direction 

for future research in this area. 
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TABLES 

Table 1 

Math Curriculum Levels and Descriptions 
 
Level   Description 
 

 7A   Counting to 10 

6A   Counting to 30 

5A   Line drawing, number puzzles to 50 

4A   Reciting and writing numbers to 220 

3A   Adding up to 5 

2A   Adding up to 10, subtracting from numbers up to 10 

A   Horizontal addition, subtraction of larger numbers 

B   Vertical addition, subtraction 

C   Multiplication, division 

D   Long division, introduction to fractions 

E   Fractions 

F   Four operations, decimals 

G   Positive/negative numbers, introduction to algebra 

H   Linear equations, inequalities and graphing 

I   Factorization, square roots, quadratic equations 

J   Advanced algebra 

 K Functions – quadratic, fractional, irrational, exponential 

L   Logarithms, calculus 

M   Trigonometry, graphs, and inequalities 

N   Loci and quadratic inequalities 

O   Advanced differentiation and differential calculus 

XT (Optional) Triangles 

XV (Optional) Vectors, equations of lines 

XM (Optional) Matrices, mapping, and transformations 

XP (Optional)  Permutations and probability 

XS (Optional) Statistics 
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Table 2 

Disability Demographics of Children in Japanese Kumon Centres  

   
Disability                       Number of students             
 
 

Autism  1418  

Mental Retardation  1316  

Down Syndrome    606 

LD/ADHD    560 

Anacusis (deafness)    164  

Cerebral Paralysis    142  

Epilepsy    114  

Physical Disability    118  

Emotional Disorder      99  

Amblyopia (visual impairment)      29  

Other       117  

 
Note. From KTRIE (2002). 
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Table 3 

Subtests of the CAT-3  

 
Skill Basic Battery Supplemental  Constructed  
           Tests   Response 
 
Reading Reading/Language  Word Analysis/Vocabulary       
 
Language Reading/Language  Language/Writing                
  
Spelling    Spelling             Dictation 
 
Mathematics Mathematics     Computation and  Math Reasoning 
     Numerical Estimation 
 
Writing    Language/Writing  Narrative/  
         Informational/Letter 
 
Note. From Soares (2005).        
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Table 4 

CCAT Structure for Levels A-H  

 
Battery Subtest    Number of items 
 
 
Verbal       Verbal Classification   20 

    Sentence Completion                20 

                                             Verbal Analogies               25 

 

Quantitative Quantitative Relations 25 

              Number Series              20 

         Equation Building    15 

 

Non-Verbal   Figure Classification    25 

         Figure Analogies    25 

    Figure Analysis    15 

 

Note. From Thorndike & Hagen (1998, p. 8). 
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Table 5 

Winter CAT-3 and CCAT Testing Levels by Grade 

 
Grade    CAT-3 level   CCAT level 
 
 
 4  14 B                

 5  15 C     

 6             16    D 
 
               
Note. From Canadian Testing Centre (2008) and Nelson Education (2008).  
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Table 6  

Testing Order 

 
Day   Order   Test  
 
  
 1 1 CAT-3 Mathematics  

       2  CAT-3 Computation and Numerical Estimation  

  2      3  CCAT Verbal Classification 

  4  CCAT Sentence Completion  

        5  CCAT Verbal Analogies  
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Table 7 

Posttesting Measures Administered 

 

Grade at pretesting                CAT-3 level CAT-3 subtests 

 

 4 14  Mathematics and Computation and   
  Numerical Estimation 
 
 5 15         Mathematics and Computation and  
                  Numerical Estimation 
 
 6 16         Mathematics and Computation and  
                                                                                Numerical Estimation 
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Table 8 

Participant Groups Based on Pretest Scores 

 

    CAT-3 Total Math   
CCAT Score   Percentile Ranking Qualitative Descriptor 
 

 

≥ 132    Above Average Cognitive Ability 

69-131   0.1st – 25th   Below Average 
 

          26th – 74th   Average 

           75th – 96th   Above Average 

             97th – 99.9th   “Gifted” 
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Table 9 
 
Descriptive Statistics for Pretest Sample 
 

 
    CAT-3 Math   CAT-3 CNE    CAT-3 Total           CCAT 
Group     n   M     SD      M     SD           M     SD            M      SD  
 
 
Grade 
 4 9 473 64 444 56   459  49  103 17 
 5  15 492 76 493 88 493 76  102 14 
 6  18 518  76 500 51  509 60  97 16  
Gender 
 Male 18 513 86           492 79 503 76 102 16 
 Female 17 490 66 482 63 486 58 99 15 
Programme 
 Math 30 507 74 485 74 496 68 104 14 
 Math/Reading 12 481 76 489 58 485 60 91 15 
Achievement Group 
 “Gifted” 1  
 Above Average 6 568 46 583 23 575 25 112 11 
 Average 23 514 53 488 40 501 37 103 12 
 Below Average 12 424 46 419 47 421 35 86 12 
Total 42 500 74 486 69 493 66 100 15 
 

 
Note. CNE = computation and numerical estimation; Total = Total Math score on the CAT-3; CCAT = 
standard age score on the Canadian Cognitive Abilities Test; Math/Reading = students enrolled in both the 
Kumon Math and Reading programmes.  
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Table 10 

Chi-square Analysis 

 
       Variable        χ2                p  
 
 
Grade  0.692  0.708   

Sex  2.888  0.089 

Kumon Programme  1.163  0.281 
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Table 11 

Pretest Descriptive Statistics for Final Sample 

 
    CAT-3 Math   CAT-3 CNE    CAT-3 Total           CCAT 
Group     n   M     SD      M     SD           M     SD            M      SD  
 
 
Grade 
 4 5 505 52 454 75  479 54  110 14 
 5  8 485 65 484 101 485 79  103 13 
 6  9 532 92 506 60  519 72  101 17  
Gender 
 Male 11 529 79 489 78 509 74 104 13 
   Female 11 493 70 483 82 488 68 104 17  
Programme 
 Math 18 505 76 476 81 491 71 104 15 
 Math/Reading 4 532 76 529 55 530 61 102 14 
Achievement Group 
 Gifted 1  
 Above Average 5 574 48 587 23 580 25 114 11 
 Average 10 530 53 486 34 508 30 106 13 
 Below Average 6 425 44 402 57 413 17 91 14 
Total 22 510 75 486 28 498 70 104 15 
 

 
Note. CAT-3 = Canadian Achievement Test, Third Edition; CNE = computation and numerical estimation; 
Total = Total Math score on the CAT-3; CCAT = standard age score on the Verbal battery of the Canadian 
Cognitive Abilities Test. 
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Table 12 

 Pretest, Posttest, and Gains Made Comparisons between Males and Females  
 
 
Dependent Variable           t          p    
 

 
Pretest Measures 
CAT-3 Mathematics                 -1.126  .274    
CAT-3 CNE    -.177 .861    
CAT-3 Total Mathematics  -.693     .497 
CCAT Standard Age Score  -.011     .991 
Posttest Measures 
Kumon Levels Advanced  -.999     .330 
CAT-3 Mathematics                -1.261  .223    
CAT-3 CNE    -.949 .355   
CAT-3 Total Mathematics               -1.164                           .259 
Scaled Score Differences 
CAT-3 Mathematics                  -.183  .857 
CAT-3 CNE    -.823    .421 
CAT-3 Total Mathematics  -.799   .434     
 
   
Note. CNE = computation and numerical estimation.     
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Table 13 
 
Summary of ANOVA Results Comparing the Gains Made on the CAT-3 Mathematics 
Subtests among Achievement Groups 
 
 
CAT-3 Subtest     F    p    
 

 
Mathematics  1.634     .223  
   
Computation and  2.576  .104 
Numerical Estimation  
     
Total Mathematics  2.841   .085    
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Table 14 

Summary of Means and Standard Deviations for Scaled Score Differences on the CAT-3 
Subtests for each Achievement Group 
 
 
                Computation and    
         Mathematics       Numerical Estimation    Total 
Achievement Group  M SD                M SD  M SD 
 

 
Below Average  48 31  88 32    68 25  

Average  15 40  59 59         37 32  

Above Average  35 34  9 78   22 44  
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Table 15 
 
Summary of Means, Standard Deviations, and Range of the Number of Kumon 
Worksheets Completed among Achievement Groups 
 
       
        Range 
             _________________________ 
  
Group   M  SD    Minimum   Maximum 
   

 
Below Average   455    115  339    601 
 
Average   501            153  270    740  
 
Above Average   551           494  230                         1426   
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Table 16 

Summary of Means, Standard Deviations, and Range of Gains Made on CAT-3 Subtests 

 
             Range 
        _______________________ 
 
Subtest M SD Minimum Maximum 
   
 
Mathematics  29   37 -44  102    

Computation and  55  62  -76   170 
Numerical Estimation               
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Table 17 
 
Multiple Regression Analysis Predicting Gains Made in Mathematical Reasoning from 
Number of Kumon Levels Advanced, Pretest Math Scores, and Cognitive Ability Scores  
 

 
Predictor b SE b β t  p 
   

 
Kumon Levels Advanced -.006 .037  -.043    -.170   .867 
CAT-3 Mathematics Score  .026  .174             .051     .147           .885 
CCAT Standard Age Score -1.223 .858            -.485         -1.425           .172 
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Table 18 
 
Multiple Regression Analysis Predicting Gains Made in Computation and Numerical 
Estimation from Number of Kumon Levels Advanced, Pretest Math Scores, and Cognitive 
Ability Scores  
 
 
Predictor b SE b β t  p 
   

 
Kumon Levels Advanced  .096 .046   .389    2.077   .053 
CAT-3 CNE Score  -.544  .170           -.683   -3.206           .005             
CCAT Standard Age Score  .936  .898  .223    1.042           .312 
          
 
Note. CNE = Computation and Numerical Estimation 
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Table 19 
 
Multiple Regression Analysis Predicting Gains Made in Total Mathematics from Number 
of Kumon Levels Advanced, Pretest Math Scores, and Cognitive Ability Scores  
 
 
Predictor b SE b β t  p 
   

 
Kumon Levels Advanced  .043 .033   .300    1.288   .215 
CAT-3 Total Math Score -.143  .157            -.276    -.907           .377           
CCAT Standard Age Score -.371  .733            -.152    -.506           .619 
 

 
 


