The University of Lethbridge
The Faculty of Health Sciences

PUBH 4850

Biostatistics

Spring, 2012

Instructor: Olu Awosoga

Prerequisites: An introductory course in Statistics (preferably, Applied Statistics)
Words of Wisdom

“The world is full of variation and sometimes it’s hard to tell real differences from natural variation. Statistics would not be needed if there were no differences and we knew your life expectancy; or whether or not a new drug was effective in eliminating pain or if everybody in the world were exactly alike, but this is not the case, people are different in all of these areas, as well as in thousands of other ways”

~ Norman & Streiner (2008)

“I always find that statistics are hard to swallow and impossible to digest. The only one I can ever remember is that if all the people who go to sleep in church were laid end to end, they would be a lot more comfortable.”

~ Mrs. Robert A. Taft

“There are three kinds of lies - lies, damned lies and statistics.”

~ Benjamin Disraeli

“Statistics are human beings with the tears wiped off.”

~ Paul Brodeur

Course Description:

“Statistics.” The word itself is usually enough to strike fear in the hearts of most students and is about as popular as words like “cancer,” “root canal,” “student loan repayments,” and “APA format.”

Fortunately, taking a biostatistics course doesn’t have to be like a semester-long version of the worst episode of “Fear Factor” you’ve ever seen. In fact, taking a course in statistics should actually be interesting, enjoyable – and dare we say......fun?

This course provides the best possible application of statistics for students in Kinesiology, Biochemistry, Psychology, Geography, Pre-medicine, Pharmacy, Biological, Life, Social, and Health Sciences. The course will include a weekly laboratory session on computer data analysis using the SPSS (PASW) for Windows statistical package. Use of Excel and a scientific calculator would also be encouraged (TI 83+ or TI 84). It will focus more on quantitative dependent variables and independent variables of either a quantitative or categorical nature. Choice of techniques and interpretation of results will be stressed more than mathematical development of methods.
You need to understand that much of the “evidence” used in evidence-based practice – in addition to many budget-related decisions – is grounded in numbers, data and medical statistics. This course will focus on the practical understanding and application of statistics in biomedical, as opposed to a more theoretical understanding of statistics. Therefore, you will be working with real data sets, and trying to solve real problems relating to health statistics in general.

Course Objectives:

Students will utilize a number of different learning strategies to examine:

- The role of biostatistics in decision making within health sciences, biomedical studies, and society as a whole.
- Probability Concepts, Probability Distributions and Random Variables
- Screening Tests, Sensitivity, Specificity, Relative Risk, Odds Ratio, and so on
- Vital Statistics: Death Rates and Ratios, Measures of Fertility and Morbidity
- Sampling Distributions and Estimation (Confidence intervals)
- Regression Models
- The Chi Square Distribution and Analysis of Frequencies
- Design and Analysis of Experiments
- Parametric vs. non-parametric statistics tests
- Significance: Statistical vs. clinical significance
- How Biostatistical and quantitative data are presented in medical research articles/journals
- Safety and Clinical Considerations in a Clinical Trial
- How to read and understand original scientific literature (Biomedical Journals)
- How research design influences analysis of quantitative data

Grades will be made up of the following:

1. Best FIVE of SIX Homework Assignments (worth 30% of the final score)
2. Best FOUR of FIVE in-class quizzes (worth 25% of the final score)
3. Applied Biostatistical Project (worth 30% of the final score) - A Project work in any area of Biostatistics (with a focus on using appropriate methodology for data analysis and interpretation of results) will be undertaken and presented during week 13 by each student
4. A final “open-book” examination (worth 15% of the final score) - A comprehensive “open book” Final examination on Friday, April 26th, from 18:00-21:00 hours (at a location to be specified by the Registrar’s Office).
Recommended Textbook: (**for Optional, * for other readings)

OPTIONAL: ***Norman, G.R. & Streiner, D.L. (2008): Biostatistics The Bare Essentials, 3rd Edition by People’s Medical Publishing House, Shelton, Connecticut. (Chapters 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 21, 22, 23, 24, 25, & 26)

***Daniel, Wayne W. (2009): Biostatistics: A Foundation for Analysis in the Health Sciences, 9th Edition by Wiley. (Chapters 1, 3, 4, 5, 6, 7, 8, 9, 12, 13, & 14)

OTHERS
*Rossi, Richard J. (2010): Applied Biostatistics for the Health Sciences by Wiley. (Chapters 1, 2, 10, & 13)

*Triola, M.M. & Triola, M.F. (2006). Biostatistics for The Biological and Health Sciences, 1st Edition by Pearson Addison Wesley. (Chapters 1, 3, 10, 12, & 13)

INSTRUCTOR: Your instructor for this course can be best reached by email, and will endeavor to get back to you within 48 hours (excluding weekends) of emailing him:

E-mail: olu.awosoga@uleth.ca (best way!)

Phone: 403-332-4058

Office Hours: 11:00 a.m. – 2:00 p.m. Wednesday (or by appointment)

Office: Markin Hall 3059 (3rd floor)

Overall Grades: The determination of final grades for all Health Sciences courses is as follows:

<table>
<thead>
<tr>
<th>Letter</th>
<th>GPA</th>
<th>Percent</th>
<th>Letter</th>
<th>GPA</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
<td>95-100%</td>
<td>C+</td>
<td>2.3</td>
<td>71-74.9%</td>
</tr>
<tr>
<td>A</td>
<td>Excellent</td>
<td>4.0</td>
<td>91-94.9%</td>
<td>C</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
<td>87-90.9%</td>
<td>C-</td>
<td>1.7</td>
<td>63-66.9%</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td>83-86.9%</td>
<td>D+</td>
<td>1.3</td>
<td>59-62.9%</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
<td>3.0</td>
<td>79-82.9%</td>
<td>D</td>
<td>Poor</td>
</tr>
<tr>
<td>B-</td>
<td>2.7</td>
<td>75-78.9%</td>
<td>F</td>
<td>Fail</td>
<td>0</td>
</tr>
</tbody>
</table>
When and Where:

The course is scheduled as follows:

Classes: Thursday 17:00 – 19:50 AH175
Labs: Thursday 20:00 – 20:50 AH147

How to Succeed in This Course

Everyone generally likes to do well in their courses; you may find the following tips and pointers helpful for your success in this course:

1) Read the course outline, particularly the sections on assignment marking and grading.
2) Be sure to ask your instructor if there is anything you do not understand about the course.
3) Make sure you budget at least 2-3 hours a week for this course (above and beyond class time) – to allow you to do the course readings, and prepare for quizzes and/or assignments.
4) If you find you would like to improve the marks on your quizzes, ask your instructor for ways that you might improve your reading and/or study skills.

Creating a Positive Learning Environment:

You’ve all invested a lot of time and money in your education, and it’s important that everyone helps to contribute to a learning environment that is as positive as possible. Therefore, all students will be expected to display (and encourage in each other) courtesy and respect during both the class and the labs. Therefore, please:

- Have shut off cell phones and beepers prior to class.
- Come to class on time and stay the entire class, unless you have informed the instructor that you will be late or must leave early. If you miss a class for any reason, you are responsible for material covered, announcements made in class, materials distributed, etc.
- Stay focused on the class/discussion (e.g., please no checking emails, Facebook, etc. in class.)
- Demonstrate respect to everyone by limiting side conversations during large group discussions and/or lectures (i.e., when we need to listen to what one person is saying). This is very important, and will be enforced if need be, by the instructor(s) stopping class/lab and sitting down for as long as it takes to stop side-conversations, and/or having a discussion with you. If an instructor has to have more than one discussion with you about classroom respect, it may be grounds – in consultation with the Dean – for asking you to leave the class/lab/course.
Course Contents:

Week 1 - Introduction to Biostatistics: Definition, Basic Biostatistical Terminology, Biomedical Studies, Observational Studies Versus Experiments, Safety and Clinical Considerations in a Clinical Trial, Types and Phases in a Clinical Trial, Definition of Population, Sample, Parameters, etc.

Weeks 3 & 4 - Vital Statistics: Death Rates and Ratios, Measures of Fertility and Morbidity. Discuss some Probability Distributions e.g. Binomial, Geometric, Multinomial, Hypergeometric, Poisson, and Normal Probability Models. ****The Scientific Method and Design of Experiments (see Daniel, page 13)

Week 5 - Sampling Distributions: Commonly Used Sampling Plans, Distribution of Sample Mean, Sample Proportion, Difference Between Two Sample Means, Difference Between Two Sample Proportions, Determining the Sample Size, Central Limit Theorem.

Week 6 - Estimation: Confidence Intervals for a Population Mean, Population Proportion, Variance of a Normally Distributed Population, Difference Between Two Population Means, Two Population Proportions, Ratio of the Variances of Two Normally Distributed Populations, Determining the Sample Size for a Confidence Interval for the Mean, Confidence Intervals for Relative Risk and Odds Ratio.

Weeks 8 & 9 - Regression Models: Revise Scatter-plots, Correlation, Simple Linear Regression and Introduce Multiple Linear Regression Equation (including Residual Diagnostics, Detecting Multivariate Outliers and Influential Observations), Multiple Correlation Model, and Logistic Regression.

Weeks 10 & 11 - The Chi-Square Distribution and The Analysis of Frequencies: Revise Hypothesis Testing (Parametric and Nonparametric “Distribution-Free” or “Rank-Based” Methods as well as defining Terms used in Statistical Hypotheses), Chi-Square Distribution (Introduce the Mathematical Properties, Tests of Goodness of Fit, Independence and Homogeneity), The Fisher Exact Test, review Relative Risk, review Odds Ratio, and the Mantel-Haenszel Statistic, The Kaplan-Meier Estimate of the Survival Function, and The Proportional Hazards Model.

Week 14 –There will be a presentation of Team Projects (15 minutes each) to be followed by a question and answer period (5 minutes each). Also, General Revision (Norman & Streiner, Chapter 28, pages 313 – 319) and Comprehensive Final Examination

Software Programs: We will concentrate more on PASW (or SPSS), but will occasionally use Excel, and any scientific calculator (e.g. TI 83+ or TI 84+).
Lab: Thursdays, 8:00 - 8:50 p.m. in AH147
The lab sessions will include instruction in the use of the SPSS for Windows statistical program. The lab will also allow further discussion of lecture topics.

Assignments: Weekly exercises based on problems in recommended texts will be assigned. The necessary computer runs are designed to be completed during the laboratory periods.

Examinations: There will be a final exam. It will be an open book examination to be completed independently.

Project Outline:

- Statement of the problem & Literature Review
- Data Collection Method – sample of questionnaire (survey tools), target population, sampling method, source of data, etc.
- Data Analysis: Methodology
- Interpretation of Results: Conclusion
- References

Note: Remember to prepare your PowerPoint presentation slides before week 14.

Project Presentation (Week 14): This will be done by each class member within a given time period of 15 minutes. There will be a 5 minutes question and answer session for each presenter.

LAB Hour (Chapter 29th of Norman, pages 320 – 330 and Morgan et al., (2011))

There will be a 50 minute weekly laboratory session starting the 2nd week of lecture.

LABORATORY CONTENT

Getting started with IBM SPSS 19: Read Norman & Streiner (chapter 29, pages 320 – 330) and Morgan et al., (chapters 2 – 3 & 6 – 10).

FIRST LAB WORK: (Rossi p12) Data Set Descriptions e.g. Birth Weight, Body Fat, Prostate Cancer, Intensive Care Unit, CHD data sets, etc.

SPSS PROCEDURES

Accommodations for Students with a Disability:

Reasonable accommodations are available for students who have a documented disability. If you have been diagnosed with a disability, there is no need to face the challenge of University without support. Please contact the Counselling Services/Students with Disabilities Resource Centre at 403-329-2766 http://www.uleth.ca/ross/counselling/index.html to set up an appointment. After registering with the Disabilities Resource Centre, your instructor will be notified by a formal letter of any accommodations you require. In addition, students are responsible for requesting accommodations from the instructor at least *two weeks* in advance of the evaluation date. The instructor and student are jointly responsible for arranging the resources needed for the evaluation process.

Plagiarism Statement:

The University of Lethbridge subscribes to Turnitin.com, a plagiarism detection service. Please be advised that student work submitted for credit in this course may be submitted to this system to verify its originality. Students must be able to submit both electronic and hard copies of their work upon request.